В языке ДРАКОН пересечения запрещены
http://bit.ly/2MGB3bdЦитата:
Минимальное число пересечений рёбер графа
Материал из Википедии — свободной энциклопедии
Рисунок графа Хивуда с тремя пересечениями. Это минимальное число пересечений среди всех возможных рисунков этого графа, так что число пересечений графа равно cr(G) = 3.
В теории графов число пересечений cr(G) графа G — это наименьшее число пересечений рёбер плоского рисунка графа G. Например, граф является планарным тогда и только тогда, когда его число пересечений равно нулю.
Математической отправной точкой изучения числа пересечений стала задача Турана о кирпичной фабрике, поставленная Палом Тураном, в которой требовалось найти число пересечений полного двудольного графа Km,n[1].
Однако та же самая задача поставлена в социологии примерно в то же самое время в связи с построением социограмм[2]. Задача продолжает играть большую роль в визуализации графов.
Если не указано другое, число пересечений относится к представлениям графов с помощью любых кривых. Условие прямолинейных пересечений требует, чтобы все рёбра были отрезками прямых, что может изменить ответ. В частности, число прямолинейных пересечений полного графа равно минимальному числу выпуклых четырёхугольников, определённых множеством n точек в общем положении, что тесно связано с задачей со счастливым концом[3].
Содержание
1 История
2 Сложность
3 Число пересечений кубических графов
4 Неравенство для числа пересечений
4.1 Доказательство неравенства для числа пересечений
5 См. также
6 Примечания
7 Литература
История
Во время Второй мировой войны венгерский математик Пал Туран вынужден работать на кирпичной фабрике, толкая тележку, гружёную кирпичами, от обжиговых печей в склады. На фабрике имелись колеи от каждой печи до каждого склада, и тележку труднее толкать в местах пересечения колей, что привело Турана к постановке задачи кирпичной фабрики: каково минимальное число пересечений рисунка полного графа?[4].
Заранкиевич (Zarankiewicz) пытался решить задачу Турана[5]. Его доказательство содержало ошибку, но он установил правильную верхнюю границу
Читать дальше