Proofs of Correctness

 History and

Motivation

» Basic Concepts
 The “Structured Theorem”

* Proofs Invo
* Proofs Invo
* Proofs Invo

ving Sequence
ving Selection
ving lteration

« Example Proof

 Strategies

» Potential Traps and Pitfalls

» Advanced Concepts

« Advantages and Disadvantages
* So What???

» References for More Information

History and Motivation

« History
— Corrado Boehm and Giuseppe Jacopini, 1966

» “Control logic of any flowchartable program can be
expressed without gotos, using only sequence,
selection, and iteration”

— Edsger Dijkstra, 1970

» “No Goto” proposal was motivated by his desire to
shorten proofs of correctness

— Harlan Mills, 1987
« Cleanroom Software Engineering

« Motivation: change the nature of programming
— From: a private, puzzle solving activity

— To: a public, mathematics based activity of
translating specifications into programs

— Proven programs can be expected to both run and
do the right thing with little or no debugging

 Foundation

— Formal Logic
— Predicate Calculus

Basic Concepts

Definition of “Proof”

— '"Establishing the validity of a statement esp. by derivation from
other statements in accordance with the principles of reasoning”
[Websters]

Any program (or module) that terminates can be regarded as a
rule for a mathematical function that converts an initial state
into a final state (whether the original problem is
“mathematical” or not)

— Matrix inversion program

— Payroll program

Non-terminating modules (e.g., an operating system) can be
expressed as terminating modules in a non-terminating loop

The function defined by any such terminating module is a set
of ordered pairs: the set of initial states, |, and final states, F,
that arise in execution

— (11,F1), (12,F2), ..., (In,Fn)

A module is correct with respect to a specification if and only if
for every initial state permissible by the specification, the
module produces the final state that corresponds to that initial
state in the specification

Structured Theorem

Derived from Boehm and Jacopini

— There exists a structured program for any problem
that permits a flowchartable solution

Structured programs define a natural hierarchy
among parts, which are repeatedly nested into
larger and larger parts, by sequence, selection,
and iteration

Each part defines a sub-hierarchy, which can be
executed independently of its surroundings in the
hierarchy

Any such part can be called a stub and given a
name - but, more importantly, it can be described
in a specification that has no control properties,
only the effect of that stub on the program’s data

— {pre-condition} function {postcondition}

» “if pre-condition is true before the function is
executed, then postcondition will be true after”

Proofs Involving
Sequence

Formal Definition (Proof Rule for Sequences)
~ I ({P} G {Q}, {Q} H {R})

— Then: ({P} GH {R})

— “If executing G when P gives Q and executing H

when Q gives R, then executing G followed by H
when P gives R”

Graphically:

Sequence (cont)

» Example:

{ P:abinteger} c:=min(ab) {Q: ab,c integer, c=lesserofab}
{ Q: a,b,cinteger, c=lesserofab} ¢ :=c-1{ R: a,b,c integer, c=(lesser of a,b)-1)

Becomes

{P:abinteger} ¢ :=min (a,b); ¢ :=c-1 { R: a,b,c integer, c=(lesser of a,b)-1 }

* Or, using a more PDL-ish style:
{ P: a,b integer }

c :=min (a,b)
{ Q: a,b,c integer, c=lesser of a,b }
C = C-1

{ R: a,b,c integer, c=(lesser of a,b)-1}

Proofs Involving
Selection

Formal Definition (Proof Rule for Selection)
- |If: ({P and B} C {Q}, {P and not B} D {Q})
— Then: ({P} if B then C else D {Q})

Graphically:

true false

Pand B P and not B

Selection (cont)

» Example

{ P: z integer }
if z<0
then { P and B: z integer, z<0 }
K:=-z
{ z,k integer, z<0, k=-z }
else { P and not B: z integer, z>=0 }
K =2Z
{ z,k integer, z<0, k=z }
{ Q: z,k integer, if z<0 then k=-z else k=z }

Proofs Involving
lteration

« Formal Definition (Proof Rule for Iteration)
- |If ({P} G {Q}, {Qand B} H {Q})
— Then ({P} G; while B do H {Q and not B})

» This rule uses the form of proof-by-induction
= G is the loop initialization, H is the loop body

« Qs the “loop invariant”, B is the loop condition

« Graphically:

B QandnotB

Qand B

lteration (cont)

» Loop Invariant

— Probably the most difficult concept to understand in proofs
of correctness

— Think of it as the condition(s) that must be true at the
beginning and end of each cycle through the loop

— Hint: start by looking at the loop’s desired post-condition,
the loop invariant will look something like that (some of
the loop’s work will have been completed and some of the
work will remain to be done), e.g.,

« Imagine the post-condition of a loop to is to:
- “{ R: have calculated Foo for n items }"

» The loop invariant would be something like:
= “{ Q: have calculated Foo for k items, where O0<=k<=n}"
» The items from 1..k have been calculated
» The items from k+1..n have not

» (Note: the loop condition, B, is obviously k=n)

« The loop body, H, has two distinct jobs

— Modify the loop variable(s) that drive the loop condition, B,

causing the loop to eventually terminate
« But, modifying the loop variable(s) will temporarily invalidate
the loop invariant, Q

— The remainder of H serves to cargr out the work
necessary to re-establish Q based on the updated loop
variable(s)

Example Proof

« Find smallest item A[j] in segment A[i..n] of array A

« Precondition, P
{ P: Alis integer array, i,n integer, 1<=i<=n<=length(A) }

» Postcondition, R
{ R: P and j integer,
1<=i<=j<=n<=length(A), A[j] = min(A[i..n]) }

n -

Length{A)

v

Example Proof (cont)

*executable” PDL is bold

| proof statements are comments in plain text |
| helpful hints are comments in italics |

i P: A is integer array, i,n integer, 1<=i<=n<=length(A) }
ji=i

\ initialization, G, to make Q, the loop invariant true }
k:=i

| O is the loop invariant |

i Q: P and),k integer, i<=)<=k<=n, A[)] = min(A[i..k]) }
while k<n | the test, B |
do tL1: Qand B }
k:=k+1 | need to eventually make B false, but invalidates Q |
{ L2: Pand }.k integer, i<=j<k<=n, A[j] = min(A[i..k-1]) }
1 need to reestablish Q, therefore |
ifA[j] = Alk]
then 1 Tl: L2 and A[k] < A[j] }
j=k
{T2:Q}
i “else™ F: P, J.k integer, i<=j<=k<=n, A[j] = min(Ali..k]) }
{ L3: Q (follows from T2 or F) |
| exit from loop |
| Q and not B, which means P and).k integer, i<=j<=k<=n,
Alj] = min(A[i..k]),
andk=n
therefore

R: P and j integer, 1<=1<=j<=n<= length(A), A[j] = min(A[i..n]) }

Strategies

« Top-down Corollary

— The lines of a structured program can be
written chronologically so that every line can
be verified only by reference to lines already
written, and not to lines not yet written

+ “Top-down Structured Programming”

— Start with a statement of some problem
« an informal statement
+ a formal specification
— Repeat until there are no more non-
executable statements:
« Substitute a non-executable statement by:
— asequence
— a selection

— an iteration
— an executable statement

+ Verify the substitution

Potential Traps and
Pitfalls

 There is a mistake in the
substitution and/or its verification,
..e., the rules of logic do not support
such a derivation

* Not determining the proper loop
invariant, Q—an invariant is an
assertion that never changes, i.e.,
Q is always true

— Immediately before loop executes the first time
— At the end of each iteration of the loop
— Upon termination of the loop

* Not verifying that the loop
terminates properly—does not form
an infinite loop

Advanced Concepts

» We have talked about “Axiomatic Verifications”
— Easier to learn
— But does not scale well to industrial-sized problems

» Functional Verification
— Reportedly scales well to industrial-sized problems
— Reportedly harder to learn

« Mills “Cleanroom Software Engineering”

— Defect prevention instead of defect removal
« Mills says debugging tends to violate original architectural
assumptions, compromising the design and leading to further
defects
— Highly disciplined approach based on Top-Down
Structured Programming
« Formal specifications (Pre-, Post-condition)
» Formal proofs of correctness on algorithms
« Peer reviews of proofs before coding
Code generated directly from proofs
« Statistical based testing
— Features reduced dependence on debugging
— Reported to have delivered significantly lower defect
densities

Advantages and
Disadvantages

« Advantages
— Based on formal mathematics
— Can significantly reduce the need for debugging
— Defects that “survive” into test are easier to find
— Defects that “survive” into test are easier to repair
— Resulting systems tend to be far more robust
— Allows significantly more confidence in the system

« Disadvantages
— Difficult to do in practice
— It's just plain old-fashioned hard work
— It's certainly not glamorous
— Proofs can suffer from same logic bugs as code
— Not “popular”
— Usually mis-understood

So What???

Limitations aside, a well written module is like a
well written proof
— Every step is necessary (no fluff)
— All steps are sufficient (no gaps)
— Each step constitutes progress toward the goal
— Clear, logical progression from step to step

We could (should) apply the ideas of Top-Down
Structured Programming in developing module
specifications for our Structured Designs
— See SE-512, Chapter 17 Structured Design, lecture
notes #9, page 5

— Applies to specifying services in an object-oriented
system, as well

Optimization should start with a system that is
known to be logically correct

— No sense wasting your time on optimizing garbage

References for More
Information

Harlan Mills, “Structured
Programming: Retrospect and
Prospect”, IEEE Software,
November, 1986

Edsger Dijkstra, A Discipline of
Programming, Prentice-Hall, 1986

David Gries, The Science of
Programming, Springer-Verlag,
1981

Harlan Mills, anything on
“Cleanroom Software Engineering”

