
Graph-based analysis of business process models

PIET BOEKHOUDT, HENK JONKERS, MICHIEL ROUGOOR
Telematica Instituut

P.O. Box 589
7500 AN Enschede

The Netherlands

Abstract: - It is widely accepted that using models is effective for the analysis of business processes. Analysis of
business process models is useful for clarifying business process characteristics, for identifying bottlenecks, and
for comparison of alternatives. Among the modelling languages, those who have a formal semantic basis are the
most suitable for analysis. The AMBER modelling language, which is explained in this paper, has such a formal
basis. By way of an example we show that the AMBER modelling language has sufficient expressive power for
business process modelling. Furthermore, we show that a class of AMBER models can easily be transformed to a
graph representation. This graph representation is a starting point for graph-based analysis, which is generic in
the sense that it is independent of AMBER specific concepts and suitable for different types of analysis. In this
paper we present a graph reduction algorithm which can be used for computing overall business process
characteristics (such as the completion time distribution) and path characteristics (such as probabilities of all
possible process instances).

Key-Words: - business processes, models, business process (re)engineering, analysis, graphs

1. Introduction

External developments force companies to
continuously improve their business processes.
Change of running processes is hazardous and might
even endanger the continuity of the company.
Therefore, an offline approach to business process
improvement is necessary to evaluate different
process design alternatives. The use of models is a
widely accepted way of doing offline (re)design and
analysis of business processes. Models help to better
understand and communicate process descriptions.
Furthermore, analysis of models is possible,
provided that the modelling language has a formal
mathematical basis.
In this paper we present research results from the
Testbed project [1]. In the Testbed project a number
of functional and quantitative model analysis
methods for so-called AMBER models have been
developed (cf. [2], [3], and [4]). Examples of these
analysis methods are critical path analysis,
completion time analysis, and utilisation and
queueing analysis. The AMBER modelling language
and the analysis methods have been implemented in
a professional business process engineering tool,
which is used by the Testbed consortium partners.
The model-based approach, as presented in this
paper, has proved invaluable in many practical cases
[1].

In this paper we present a graph-based formalism
which can be used for different types of business
process analysis. We present a graph reduction
algorithm which can be used for computing overall
business process characteristics (such as the
completion time distribution) and path
characteristics (such as probabilities of all possible
process instances).
The organisation of this paper is as follows. In
Section 2 the AMBER modelling language is
explained. In Section 3 we describe how an AMBER
model can be translated to a graph representation. In
Section 4 we present a generic graph based
algorithm for analysis. In Section 5 we present our
conclusions and our future work. Throughout this
paper a simple business process model will be used
for illustration.

2. The AMBER Modelling Language

In the Testbed approach [1], we distinguish three
modelling domains, corresponding to different
aspects of business processes. The behaviour
domain models the activities and their relationships,
the entity domain (or: actor domain, as used in later
publications) models the resources that carry out
these activities, and the item domain models the data
objects which are manipulated by the process. The

latter two domains are not relevant for the types of
analysis described in this paper, and will therefore
not be considered. The modelling language in
Testbed is based on an architectural design
framework for distributed systems developed at the
University of Twente [6] and is called AMBER
(Architectural Modelling Box for Enterprise
Redesign). In the remainder of this section, we will
introduce the main concepts in the behaviour
domain, and illustrate them on an example process.

2.1 Actions and causality relations

The basic behaviour element is an action, denoted by
a (stretched) circle. Actions can be related in that
certain restrictions can be imposed on the order in
which they are performed. Fig. 1 shows the basic
relations between actions that can be expressed in
the language.

a b f

d

e

c j

h

i

g

0.6

0.4

Fig. 1 Basic relations: causality, choice, parallelism.

The simple causality relation indicates that action b
can only occur after action a has completed. Choice
is modelled by an or-split (open diamond): after
action c has completed, either d or e can occur. A
condition or probability can be associated with the
branches. The or-join (open box) indicates that
action f can start if either d or e has finished.
Parallelism is modelled by an and-split (black
diamond): after action g has completed, both h and i
can start. The and-join (black box) indicates that j
can start as soon as both h and i have finished.
The splits and joins can be used in any combination:
it is, e.g., not required that a section that starts with
an and-split is followed by an and-join. However,
the majority of models found in practice consist of a
structured (possibly nested) use of matching splits
and joins. We call these models basic series-parallel
(SP) models, because they form an extension of the
well known class of SP task graphs as described in,
e.g. [7]. The analysis techniques described in this
paper apply for basic SP models, as well as for
models that can be transformed to these models
(extended SP models, to be explained in section 3.2).

2.2 Structured models and interactions

In addition to the above-mentioned basic ingredients
of a behaviour model, Testbed offers a number of
concepts to build models in a more structured way.

In particular, a model can be subdivided in a number
of behaviour blocks, drawn as rounded rectangles. A
behaviour block groups a number of actions, and can
contain other (nested) blocks. Actions can be
grouped in many ways, e.g., based on the different
resources (actors) that are involved in the process.
Interactions, represented by (stretched) semicircles,
are actions that are performed by two (or more) co-
operating behaviour blocks. Corresponding
interaction contributions are connected.
Fig. 2 shows the behaviour model of an example that
will be used throughout this paper. The numbers in
this figure are probabilities. In this example the
process of ordering and receiving office goods is
modelled:

The process starts with a need for goods of office
employees, who send a request to the office secretary
(request). The secretary sends an order to a supplier
(send). The supplier ships the goods and delivers the
goods to the goods department of the office where they
are received (receive). At the goods department the goods
are inspected for completeness and possible damage
(inspect). If goods are OK, they are booked, forwarded
and finally stored by the office employees (store). If
however, after inspection, the goods turn out to be not OK
a compensation order is made by the secretary (renew).
The secretary gets completion details from office
employees (detail). The complete compensation order is
send to the supplier (resend). Simultaneously, an
investigation is made whether the goods can be reutilized
(list). If goods can not be reutilized, they are returned to
the supplier (return). If goods can be reutilized, they are
booked and forwarded to the department where the
employees store them (store).

Office

renewrenew

storestore

detaildetail
inspectinspect

listlist

not complete

0.10

not OK

0.2

OK 0.8 to be
kept 0.5

complete

0.90

to be
returned

0.5

receivereceive resendresendsendsend returnreturn

Supplier

sendsend resendresendreceivereceive returnreturn

request

Fig. 2 Example: goods ordering process.

This model shows a number of concepts that have
not yet been explained:

• A trigger starts a process, in this example
request (office employees having a need for
certain goods).

• Entries and exits, represented by small triangles,
are used when an arrow crosses the boundaries of
a behaviour block

• Repetitive (inter)actions, i.e. (inter) actions that
(potentially) occur more than once are drawn
with a double edge. A double-pointed arrow
indicates the start of a new loop. In the example
the compensation order is defined in an iterative
fashion: details are added until the compensation
order is evaluated complete.

The purpose of the subdivision of the model in
behaviour blocks is to increase the readability of the
model. It is irrelevant for the types of analysis
described in this paper: interactions connected with
an interaction relation can be considered as a single
action, and an incoming and outgoing arrow of an
entry or exit can be combined into a single arrow.

2.3 Profiles

The concepts as described above only describe the
existence of actions and their causal relations.
However, for the analyses we will consider next, we
also need to know their properties, such as the
duration of actions and branching probabilities for
an or-split. In the AMBER language, properties
specific for a certain type of analysis are attached to
the concepts by so-called profiles. For completion
time analysis, for example, we attach a “Completion
Time”-profile to each (inter)action, consisting of a
number of attributes, such as the mean duration and
the probability distribution type. For causality
arrows leaving an or-split we attach probabilities in
a “Probability”-profile.

3. Graph representation of models

In this paper, we consider analysis methods that use
the structure of a process model in terms of (nested)
serial, parallel (“and”), choice (“or”) and loop
(“repetition”) constructs. However, the models in the
previous section do not directly show this structure.
Therefore, we propose an intermediary
representation of models as a directed, acyclic
series-parallel (SP) graph, where the nodes
represent the above-mentioned constructs and the
leaves represent actions. Depending on the type of
analysis, it might be needed to annotate a node with
certain additional information, e.g. the duration of an
action. For many analysis techniques the outgoing
arcs of an or-node should be annotated with a

probability. Note that models can only be
represented in this way if it is possible to describe
them as a (nested) combination of these constructs.
Therefore, the analysis techniques that we will
describe are only applicable to this class of models,
which we will call SP models.

3.1 Tree representation of basic SP models

First, we will consider the class of models that we
will call basic SP models, i.e., models for which the
graph representation is a tree rather than a general
directed acyclic graph.
Fig. 3 shows the basic constructs and their
equivalent in an SP tree.

a b

a

b

a

b
1−p

p

a

b

p
1−p

a

or

b

p 1−pser

bb

and

bb
a

rep

b

p

Fig. 3 SP tree representations of basic constructs.

3.2 Graph representation of extended and
approximate SP models

We can extend the class of SP models by
considering models that can be replaced by an
equivalent basic SP model by means of duplication
of actions, i.e., an action can occur in more than one
parallel or choice section. In the SP-graph, this
means that a leaf or intermediary node can have
more than one incoming arc, i.e., the graph is no
longer a tree. Fig. 4 shows a typical example of such
a model and its SP tree representation, as well as the
equivalent basic SP model (where the double line
indicates that the actions c are identical, i.e., they
correspond to the same action in the original model).

b

a

c
1−p

p
1−q

q

a

or

c

p 1−p

b

ser

or

ser

empty

q 1−q

Fig. 4 SP-graph representation of an

extended SP-model

Finally, we consider models that we will call
approximate SP models. For these models, it is not
possible to construct an equivalent basic SP model.
However, by means of action duplication, we can
construct a basic SP model that can be used to obtain

exact or approximate results for some types of
analysis (e.g., exact results for critical path analysis,
and approximate results for stochastic completion
time analysis). Fig. 5 shows a typical example of an
approximate SP-model and its SP graph
representation, as well as the basic SP model that
approximates the original model.

a

and

d

b

ser

and

ser

c

a

b

c

d

Fig. 5 SP graph representation of an
approximate SP model.

3.3 Derivation of an SP graph

In this subsection we illustrate how an SP graph is
constructed, given an AMBER model of a process.
We start with a “flat” model, i.e., a model in which
the block structure has been removed and related
interactions have been combined into single actions.
Fig. 6 shows the flat version of our example model.

detail

send

resend

receive inspect

renew

list

store

return

request

Fig. 6 Original model (“flat”).

The general idea of the algorithm is to reduce the
AMBER model, and at the same time building up the
SP graph. In the original model, we identify
sections, i.e., arrows between nodes (where nodes
can be actions, splits or joins). With each section, we
can associate an SP graph (which is a part of the SP
graph of the whole model). In the initial model,
these graphs are empty.
The AMBER model is reduced by combining several
sections into one new section, while storing the
structural information in the SP graph associated
with the new section. Four types of reduction are
defined: serial, split (which can be refined into
parallel and choice), repeat and duplication. Fig. 7
shows an example of the result of a number of serial
reductions.

 store

renew resend

return

request

receivesend inspect

ser

detail

list

Fig. 7 Partly reduced graph.

Duplication occurs in extended SP models, e.g. for
the action forward in Fig. 8. The result of
duplication is that one SP graph is associated with
more than one section (in our example this is the
graph consisting of the single node forward). Fig. 8
also shows examples of the result of a repeat
reduction.

store

resend

return

request

receivesend inspect

ser

list

renew

rep

detail

ser

resend

store

forward

Fig. 8 Further reduced graph.

The reduction continues until a single section
remains. The SP graph associated with that section is
the SP graph that represents the complete model.
Sometimes it is not possible to reduce an AMBER
model to a single section: this means that the model
is not a (basic or extended) SP model and the
analysis methods described in this paper cannot be
applied to this model. Fig. 9 shows the final SP
graph representation of our example model.

listlist

receivesend inspectinspect

ser

or

and

rep

renew detail

ser

or

return store

ser

resend

Fig. 9 SP graph representation of the

example model.

4. Graph based analysis

In the previous section we transformed AMBER
models to graphs. In this section we show how to
perform different types of analysis on SP graphs.
Basically, we traverse the tree and use a graph
reduction algorithm. In the traversal step we
navigate from the leaves to the root of the tree. In
the reduction step we apply the analysis to
elementary tree constructs.

4.1 Reduction algorithm

In this section we first consider the reduction of
basic model constructs, like those in Fig. 3 The
reduction amounts to substitution of the basic model
construct by a single action and by computing the
properties of this single action. An example should
make things clear.

Example 1
Suppose we have the simple model as described in
Fig. 10. The boxed numbers in this diagram are the
processing times of the actions.

a

d

c

b

0.2

0.8

3

6

4

5

ser

a

b

c

and

ser

a

c

d

or

4

3

6and
0.8 0.2

5

Fig. 10 Simple example and corresponding tree.

Suppose we wish to know the mean completion time
of the process. We start by looking at the parallel
section with actions b and c. As action c takes longer
to complete than action b the duration of this section
is max(4,5) = 5, assuming deterministic processing
times. The reduction step now is to replace the
parallel section by an action s1 with processing time
5, as shown in Fig. 11.

ser

a

c

and

ser

a

s1 d

or3

6
0.8 0.2

5

Fig. 11 First reduction step.

The second reduction step concerns the or-section
with actions s1 and d. Using the probabilities, we
find for the mean completion time 0.8∗5 + 0.2∗6 =
5.2. The or-section is replaced by an action s2 with

processing time 5.2, as shown in Fig. 12.

a

ser

a s23 5.2

Fig. 12 Second reduction step.

In the final reduction step, the serial section is
replaced by an action s3. The processing time of s3
equals the sum of the processing times of a and s3,
i.e. 8.2. In this final reduction step we find that the
mean completion time of the process equals 8.2.

�
As this example shows, in a reduction step a section
is replaced by a single action and a certain
calculation on the attribute values is performed.
For certain types of analysis we also need to keep a
record of the intermediate results. For example, if
we wish to determine the critical path of the model
in Fig. 10, we also need to exclude action b (which
has a shorter duration than action c) as a result of the
reduction. The actions on the critical path cannot be
determined before the complete model is reduced to
a single action. Actions that are not excluded are
candidates for the critical path. For other types of
analysis, we also wish to determine all possible
paths and, simultaneously, for each individual path
certain properties (such as the probability that an
instance of this path will occur and the duration of
this path).
It is for these reasons that we represent an action a
(which might be a result of a reduction step) by the
following quadruple:

(a, n, Σa, Πa),
where a is the name of the action, n is the number of
alternative paths in the sub-model that is represented
by a, Σa is the intermediate result for a, and Πa is a
symbolic representation of the alternative paths
including the properties of these paths. This is
written as

Πa = <σ1, π1, … , σi, πi,…,σn, πn>,
where σi is the property of the i-th path πi. The path
of an elementary action a (i.e., an action which is not
a result of an reduction step) is represented by a
string

a;
where clearly, a is the name of the action and the
semicolon is used as delimiter. The notation for the
basic constructs is now given in Table 1.

Serial <σ, {a; b;}>
And <σ, [a; b;]>
Or <σ1, a;, σ2, b;>
Rep <σ1, a;, σ2, {a;*{b;a;}}>

Table 1 Notation for basic constructs.

If the probability of the occurrence of a path is the
only property we are interested in, then in Table 1

σ = 1, σ1 = p, σ2 = 1− p.
The * in the notation for the repetition is used to
express that the part following the * is executed an
unspecified number of times.
We are now ready to give the description da of an
elementary action a as

da = (a, 1, Σa, <σ a, a;>).
The reduction of the basic model constructs now
amounts to an operation on the descriptions of the
actions, i.e. the reduction of a serial of elementary
actions a and b is symbolically denoted by

ser_red(a,b)
Let

da = (a, 1, Σa, <σ a, a;>)
db = (b, 1, Σb, <σ b, b;>).

Create a new action s, with
ds := (s, 1, Σs, Πs),

and
(Σs, Σa, Σb):= fserial(Σa, Σb),
Πs := <gserial(σ a, σ b), {a;b;}>.

fserial and gserial denote operations, specific for the
reduction of the serial, and specific for the type of
analysis to be performed. Note that the reduction
step may also alter the attribute values of a and b
(for example in the critical path analysis, where an
action may be excluded).
Clearly, the reduction of the basic constructs can
symbolically be represented as in Table 2:

ser_red(a,b) ds := (s, 1, Σs, Πs)
(Σs, Σa, Σb):= fserial(Σa, Σb)
Πs := <gserial(σ a, σ b), {a;b;}>

and_red(a,b) ds := (s, 1, Σs, Πs)
(Σs, Σa, Σb):= fand(Σa, Σb)
Πs := <gand(σ a, σ b), [a;b;]>

or_red(a,b,p) ds := (s, 2, Σs, Πs)
(Σs, Σa, Σb):= for(Σa, Σb)
Πs := <gor,1(σ a, σ b, p), a;,

gor,2(σ a, σ b, 1-p), b;>
rep_red(a,b,p) ds := (s, 2, Σs, Πs)

(Σs, Σa, Σb):= frep(Σa, Σb)
Πs := <grep,1(σ a, σ b, p), a;,

 grep,2(σ a, σ b, 1-p),
{a;*{b;a;}}>

Table 2 Reduction of basic constructs.

Example 1 (continued)
Suppose we want to further analyse the simple
model in Fig. 10, i.e. we want to determine the
following:

• the actions on the critical path, i.e. the
sequence of actions that dominate the
completion time;

• the completion time of the critical path;
• all possible paths and the completion time of

these paths;
• the probability of all possible paths.

For the description of an action s we take
ds = (s, n , Σs, <σ1, π1, … , σi, πi,…,σn, πn>).

Σs has two components
• the completion time of the sub-model

corresponding to action s (which might be a
result of a reduction step);

• a Boolean variable which indicates whether
s is to be excluded from the critical path.

σi also has two components
• the completion time of the ith path;
• the probability of the occurrence of the ith

path.
For the description of an elementary action a we
therefore take

da = (a, 1, Σa, <σ a, a;>).
where

Σa = (ta, ba), σa = (da, pa).

ta is the completion time of a, and ba is a Boolean
variable which has value 0 if action a is excluded
from the critical path. For an elementary action the
completion time of the path (which is a single
action) is da = ta, and pa = 1 (by default).
The first reduction step (cf. Fig. 13) deals with the
elementary actions b and c, with descriptions

db = (b, 1, (4, 1), <(4,1), b;>),
dc = (c, 1, (5, 1), <(5,1), c;>).

Action c has a larger completion time than action b,
and therefore b is excluded. The result of the
reduction is an action s1 (cf. Fig. 11) with following
description:

ds1 = (s1, 1, (5, 1), <(5, 1), [b; c;]>).
Since action b is excluded, also its description is
changed:

db = (b, 1, (4, 0), <(4,1), b;>),

ser

a

b

c

and

ser

a

c

d

or

4

3

6and
0.8 0.2

5

Fig. 13 First reduction step for critical path analysis.

The result of the reduction step is shown in Fig. 11.
The second reduction step yields an action s2 (cf.
Fig. 12) representing two alternative paths:
ds2 = (s2, 2, (5.2, 1), <(5, 0.8), [b; c;], (6, 0.2),d;>).

Finally, the reduction of the serial in Fig. 12 yields
an action s3 with description

ds3 = (s3, 2, (8.2, 1), <(8, 0.8), {a;[b; c;]},
(9, 0.2),{a;d;}>).

From the description of s3 we conclude that the
mean processing time of the critical path is 8.2.
There are two alternative paths, the first path has
probability 0.8 and completion time 8; the second
path has probability 0.2 and completion time 9. The
critical path is constructed in the opposite direction,
i.e. by deselecting all actions that constituted a
deselected (substitute) actions. For this particular
example this was already done for action b, which is
an elementary action. Hence, all elementary actions
except action b lie on the critical path.
If action b was not an elementary action, but for
example a result of a reduction step for a parallel
section with actions e and f, then these actions would
be excluded as well.

�
The reduction algorithm consists of a generic part,
which will be used for all types of analysis, and a
specific part. The generic part deals with the
construction of the path strings πi and the
computation of the number of alternatives n. The
specific part deals with the computation of the
properties Σa and σa.
The path strings are obtained by using the reduction
rules from Table 2 and by using substitution. For
example if

πi ≅ {a; s;} and s ≅ <b; c;>
then

πi ≅ {a; <b; c;>} = <{a; b;},{ a; c;}>,
where the last (simplifying) equality may be checked
by inspecting the tree (we slightly abused notation to
avoid unnecessary notational complexity). Note that
the simplification is necessary to obtain the
alternative paths. The result of the substitution and
simplification is shown in Fig. 14.

ser

a

c

and

ser

a

b c

or

ser

a

ser

a s

ser

b c

and

or

a a c

serser

Fig. 14 Construction of alternative paths.

Clearly the aim of this step is, to get a single or-node
at the root of the tree (a so-called disjunctive normal
form). A similar reasoning may be used for other
substitutions.
The number of alternative paths is computed as
follows. Suppose we have two actions s1 and s2
which are a result of reduction steps. Furthermore,
suppose that s1 and s2 correspond to n1 and n2
alternative paths, respectively. It is easily verified
that the reduction step yields the number of
alternatives as show in Table 3.

 # alternatives
ser_red(s1, s2) n1 + n2
and_red(s1, s2) n1n2
or_red(s1, s2, p) n1 + n2
rep_red(s1, s2 , p) 2n1n2

Table 3 Number of alternatives.

The reduction algorithm is most easily implemented
by using recursion, as described in [3].

Example 2

Consider the example process in Fig. 1.
Duplicating actions, as explained in section 3.2,
and using the reduction algorithm, we find the
following five path strings:

1: {send;receive;inspect;[{renew;resend;},{list;store;}]}
2: {send;receive;inspect;

[{renew;*{detail;renew;}resend;},{list;store;}]}
3: {send;receive;inspect;

[{renew;resend;},{list;return;}]}
4: {send;receive;inspect;

[{renew;*{detail;renew;}resend;},{list;return;}]}
5: {send;receive;inspect;store;}

�

4.2 Examples

In this section we describe some typical examples of
business process model analysis. In what follows we
assume that actions s1 and s2 are obtained as a result
of a reduction step. Let πi denote an arbitrary path in
the description of s1 and πj an arbitrary path in the
description of s2. Also, let σi and σj, respectively,
denote the properties of these paths.
In a simple analysis the probabilities of the

alternatives are computed.

“Probability of path”- analysis
Let the probability of πi be given by pi and of πj by
pj . In the reduction step πi and πj are combined to a
new path with probability p. The result of this
combination is shown in Table 4.
 Probability p
gserial(pi, p j) pi p j
gand(pi, p j) pi p j
(gor,1(pi, p j, p), gor,2(pi, p j, 1- p)) (p pi ,(1-p) pj)
(grep,1(pi, pj, p), grep,2(pi, p j, 1- p)) (p pi ,(1-p) pi pj)

Table 4 Probabilities of alternatives.

�

Example 2 (continued)

Using the probabilities in Fig. 2 we find the
following probabilities for the five alternatives:

Path 1 2 3 4 5
Probability 0.09 0.01 0.09 0.01 0.80

The Testbed Studio tool, which supports the
modelling and analysis of AMBER models, is able to
show all paths. The path with the highest probability
is shown in Fig. 15.

Office

renewrenew

store

detaildetail
inspect

listlist

not complete

0.10

not OK

0.2

OK 0.8 to be
kept 0.5

complete

0.90

to be
returned

0.5

receive resendresendsend returnreturn

Supplier

send resendresendreceive returnreturn

request

Fig. 15 Path with highest probability.

�
“Completion time of path”-analysis
If we assume that every action in the process model
has a known probability distribution of its
processing time, we may compute the probability
distribution of the entire process. This we will call
the completion time distribution of the process. This
is described in detail in [3]. We can also compute the
probability distribution of the completion time of
each alternative path. This is what we will
investigate here.

Suppose the paths πi and πi have probability density
functions di and dj, and corresponding distribution
functions Di and Dj respectively.
In the reduction step πi and πj are combined to a new
path with probability density function d and
corresponding distribution function D. The result of
this combination is shown in Table 5.
 Probability function D
gserial(Di, D j) Di ∗ D j
gand(Di, D j) DiDj
(gor,1(Di, Dj, p),
 gor,2(Di, Dj, 1- p))

(DI ∗ D j , Di ∗ D j)

(grep,1(Di, Dj, p),
grep,2(Di, Dj, 1- p))))1(,(*

1

)1(*1 k
j

k

k
i

k
i DDppD ∑

∞

=

+−−

Table 5 Completion time distributions of
alternatives.

The ∗-symbol in the table denotes (discrete)
convolution, i.e., for every discrete point in time

)()())((
0

ktdkDtDD j

t

k
iji −=∗ ∑

=

and D∗n denotes repeated self-convolution:
D∗0 (t) = 1, D∗1 = D, D∗2 = D ∗ D, etc.

�

5. Conclusions and future work

In this paper we presented the AMBER language for
business process modelling. This graphical
modelling language has a formal mathematical basis,
which makes it suitable for analysis purposes. Non-
graphical information can be added to models by
using profiles. For (basic and extended) SP models
we showed that they have an equivalent graph
representation. Analysis of these models is based on
a tree reduction algorithm. Relaxing the SP
constraint, also extended SP and approximate SP
models can be analysed. The algorithm can easily be
used for all kinds of business process analysis, such
as (critical) path analysis and completion time
analysis.
The algorithm can easily be adapted to other types of
analysis, e.g. cost analysis, risk analysis, and fuzzy
completion time analysis (based on [5]) on which we
are currently working.

Acknowledgement
This paper is based on research from the Testbed
project, which develops a language, methods and
tools to support business process modelling and
(re)design in the financial sector (see
http://www.telin.nl/testbed/eng/default.html).

Project results have been applied in several real-life
business cases. The project is a collaboration of the
pension fund ABP, the Dutch Tax Department, ING
Group, IBM and the Telematica Instituut, and is
financially supported by the Dutch Ministry of
Economic Affairs.

References:

[1] H.M. Franken, and W. Janssen, Get a Grip on
Changing Business Processes: Results from the
Testbed Project, Knowledge & Process Management
(J. Wiley), 1998.
[2] W. Janssen, R. Mateescu, S. Mauw, P. Fennema,
and P. van der Stappen, Model Checking for
Managers, Proc. of the International SPIN
Workshop, Toulouse, 1999.
[3] H. Jonkers, P. Boekhoudt, M. Rougoor, and E.
Wierstra, Completion Time and Critical Path
Analysis for the Optimisation of Business Process
Models, Proc. of the 1999 Summer Computer
Simulation Symposium, M.S. Obaidat, A. Nisanci
and B. Sadoun (eds), Chicago, 1999, pp. 222-229.
[4] H. Jonkers, and M. van Swelm, Queueing
Analysis to Support Distributed System Design,
Proc. of the 1999 Symposium on Performance
Evaluation of Computer and Telecommunication
Systems, M.S. Obaidat and M. Ajmone Marsan
(eds), 1999, pp. 300-307.
[5] A. Kaufmannn, and M.M. Gupta, Introduction
to Fuzzy Arithmetic, Van Nostrand Reinhold
Company, 1985.
[6] D.A.C. Quartel, L. Ferreira Pires, M.J. van
Sinderen, H.M. Franken, and C.A. Vissers, On the
Role of Basic Design Concepts in Behaviour
Structuring, Computer Networks and ISDN Systems,
Vol. 29, No. 29, 1997, pp. 413-436.
[7] R. Sahner, K.S. Trivedi, and A. Puliafito,
Performance and Reliability Analysis of Computer
Systems: an Example-Based Approach using the
SHARPE Software Package, Kluwer Academic
Publishers, 1996.

