

State of the Art in
Architecture Concepts
and Description

ArchiMate Deliverable D2.1

COPYRIGHT © 2002 TELEMATICA INSTITUUT / ARCHIMATE CONSORTIUM

PERSONAL USE OF THIS MATERIAL IS PERMITTED. HOWEVER, PERMISSION TO REPRINT/REPUBLISH THIS MATERIAL FOR ADVERTISING OR PROMOTIONAL PURPOSES OR

FOR CREATING NEW COLLECTIVE WORKS FOR RESALE OR REDISTRIBUTION TO SERVERS OR LISTS, OR TO REUSE ANY COPYRIGHTED COMPONENT OF THIS WORK IN

OTHER WORKS MUST BE OBTAINED FROM OR VIA TELEMATICA INSTITUUT (HTTP://WWW.TELIN.NL).

 Colophon

Date : 20-12-2002

Version : 1.0

Change : Finalized

Project reference: ArchiMate/D2.1

TI reference : TI/RS/2002/113

Company reference :

URL : https://doc.telin.nl/dscgi/ds.py/Get/File-27883/

Access permissions : Project

Status : Final

Editor : Henk Jonkers

Company : Telematica Instituut (TI)

Leiden Institute of Advanced Computer Science (LIACS)

Authors : Maria-Eugenia Iacob (TI)

Henk Jonkers (TI)

Marc Lankhorst (TI)

René van Buuren (TI)

Luuk Groenewegen (LIACS)

Kok Hing Cheung (LIACS)

Marcello Bonsangue (LIACS)

Niels van Kampenhout (LIACS)

Synopsis:

This document is concerned with current practice in architectural

modelling of organisations and applications, either in separation or

combined. Special attention is paid to how the elements of existing

frameworks and languages can be used to help to reach the goals of the

project.

 A R C H I M A T E / D 2 . 1 V

ArchiMate

Organisations need to adapt increasingly fast and flexible to changing customer

requirements and business goals. This need influences the entire chain of activities of a

business, from the organisational structure to the network infrastructure. How can you

control the impact of these changes? Architecture may be the answer. The ArchiMate

project will develop an integrated architectural approach that describes and visualises the

different business domains and their relations. Using these integrated architectures aids

stakeholders in assessing the impact of design choices and changes.

Architecture is a consistent whole of principles, methods and models that are used in the

design and realisation of organisational structure, business processes, information systems,

and infrastructure. However, these domains are not approached in an integrated way, which

makes it difficult to judge the effects of proposed changes. Every domain speaks its own

language, draws its own models, and uses its own techniques and tools. Communication

and decision making across domains is seriously impaired.

The goal of the ArchiMate project is to provide this integration. By developing an

architecture language and visualisation techniques that picture these domains and their

relations, ArchiMate will provide the architect with instruments that support and improve the

architecture process. Existing and emerging standards will be used or integrated whenever

possible. ArchiMate will actively participate in national and international forums and

standardisation organisations, to promote the dissemination of project results.

The project will deliver a number of results. First of all, we will provide a visual design

language with adequate concepts for specifying interrelated architectures, and specific

viewpoints for selected stakeholders. This will be accompanied by a collection of best

practices and guidelines. Furthermore, ArchiMate will develop techniques that support

architects in visualisation and analysis of architectures. Finally, project results will be

validated in real-life cases within the participating organisations.

To have a real impact on the state of the art in architecture, the ArchiMate project consists

of a broad consortium from industry and academia. ArchiMate’s business partners are

ABN AMRO, Stichting Pensioenfonds ABP, and the Dutch Tax and Customs Administration

(Belastingdienst); its knowledge partners are Telematica Instituut, Ordina Institute, Centrum

voor Wiskunde en Informatica (CWI), Leiden Institute for Advanced Computer Science

(LIACS), and Katholieke Universiteit Nijmegen (KUN).

More information on ArchiMate and its results can be obtained from the project manager

Marc Lankhorst (Marc.Lankhorst@telin.nl) or from the project website, archimate.telin.nl.

 A R C H I M A T E / D 2 . 1 V I I

Table of Contents

1 Introduction 4

1.1 Target group 4

1.2 Position of this work in ArchiMate 4

1.3 Working process 5

1.4 How to read this document 5

1.5 Document structure 5

2 Architectural f rameworks and standards 8

2.1 Zachman’s framework 8

2.2 Reference Model for Open Distributed Processing 9

2.3 Rapid Service Development framework 11

2.4 OMG’s Model Driven Architecture 12

2.5 The Open Group Architectural Framework 13

2.6 Other frameworks 14

2.7 Summary 15

3 Organisat ion and process model l ing languages 17

3.1 AMBER and NEML 17

3.2 IDEF 20

3.3 ARIS 24

3.4 Other languages 27

3.5 Conclusions 29

4 Applicat ion and technology modell ing languages 31

4.1 Unified Modelling Language 31

4.2 Architecture description languages 35

4.3 Other application modelling languages 37

4.4 Technical infrastructure modelling 38

4.5 Conclusions 38

 A R C H I M A T E / D 2 . 1 1

Management summary

This report surveys the current state of the art in architectural modelling of organisations

and applications, either in separation or combined. The topics include architectural

frameworks, languages for organisation and process modelling, and languages for

application and technology modelling. Although there is a trend towards considering the

relationship between the organisational processes and the information systems and

applications that support them (often referred to as “business-IT alignment), modelling

techniques to really express this relationship hardly exist yet.

Frameworks and languages are not described in full detail, but their basic role and context

are given. The large number of related concepts does not leave much space for extensive

discussions, but we provide references to more detailed information, both in this document

and in our web-based application – The ArchiMate Resource Tree (see Section 1.3). We

have also refrained ourselves from doing detailed comparisons between the subjects we

have surveyed. However, we have tried to digest the major issues and trends from the

information we had at our disposal, and to give our opinion on the relevance of these

subjects for ArchiMate.

Frameworks

Frameworks structure architectural description techniques by identifying and relating

different architectural viewpoints and the modelling techniques associated with them. They

typically define a number of conceptual domains or aspects to be described. The figure

below shows a number of domains that are often distinguished, divided in three ‘levels’.

Frameworks do not provide the concepts for the actual modelling, although some

frameworks are closely connected to a specific modelling language or set of languages.

Many frameworks are associated with a design method. A metamodel (formally) defines the

concepts of a language and their relationships. As a metamodel at a certain level of

abstraction may also define the conceptual domains covered by a language, it could be

considered an extension of a framework.

Business

level

Application

level

Behaviour

domain

Technology

level

Information/

data domain

Organisation

domain

Application

domain

Technical

infrastructure

domain

Product

domain

Well-known examples of architectural frameworks are:

 2 T E L E M A T I C A I N S T I T U U T

�� Zachman’s “framework for enterprise architecture” is widely known and used. It identifies

30 or 36 views on architecture (“cells”), based on five or six levels (scope, enterprise,

logical system, technology, detailed representations and functioning enterprise) and six

aspects (data, function, network, people, time, motivation). The large number of views is

an obstacle for the practical applicability of the framework.

�� The Reference Model for Open Distributed Processing (RM-ODP) is an ISO/ITU

Standard, which defines a framework for architecture specification of large distributed

systems. It defines, among others, five viewpoints on a system and its environment:

enterprise, information, computation, engineering and technology.

�� The architectural framework of The Open Group (TOGAF) is completely incorporated in

the TOGAF methodology. TOGAF has four main components, one of which is a high-

level framework defining four views: Business Architecture, Data/information

architecture, Application Architecture and Technology Architecture.

Organisat ion and process model l ing languages

A wide variety of organisation and process modelling languages are in use: there is no

standard for models in this domain. The conceptual domains that are covered differ from

language to language. In many languages, the relations between domains are not clearly

defined. Also, most languages are not really suitable to describe architectures: they provide

concepts to model, e.g., detailed business processes, but not the high-level relationships

between different processes. Software tools are an important success factor for a language;

some of the most popular languages are proprietary to a specific tool. Relevant languages

in this category include:

�� Amber is the business process and organisation modelling language in Testbed Studio,

a tool used by among others Belastingdienst and ABP. Amber models appear to be easy

to use and understand, also for non-expert users.

�� IDEF, originating from the US Ministry of Defence, is a collection of 16 diagramming

techniques. However, only three of them are widely used: IFEF0 (function modelling),

IDEF1/IDEF1x (information/data modelling) and IDEF3 (process description).

�� ARIS (“Architecture of Integrated Information Systems”) has an academic origin, but is

now part of the widely used ARIS Toolset. Although, in principle, ARIS also covers other

conceptual domains, there is a clear focus on business process and organisation

modelling.

Applicat ion and technology modell ing languages

In contrast to organisation and business process modelling, for which there is no single

dominant language, in modelling applications and technology UML has become a true world

standard. UML is the mainstream modelling approach within ICT, and its use is expanding

into other areas. This makes UML an important language not only for modelling software

systems, but also for business processes and for the general business architecture. UML

has either incorporated or superseded most of the older ICT modelling techniques still in

use.

However, UML is not easily accessible and understandable for managers and

organisational specialists; therefore, special visualisations and views of UML models should

be provided. Given the importance of UML, other modelling languages will likely provide an

 A R C H I M A T E / D 2 . 1 3

interface or mapping to it. This is also advisable to ArchiMate; it should be possible to

describe the ArchiMate concepts in UML, or to map them to UML by using e.g. stereotypes

and profiles.

Architecture description languages (ADLs) define high-level concepts for architecture

description, such as components and connectors. Most of them have an academic

background, and their application in practice is limited. However, they have a sound formal

foundation, which makes them suitable for unambiguous specifications and amenable to

different types of analysis. The next version of UML (UML 2.0), will likely comprise more

concepts on the architectural level as well, drawing inspiration from ADLs. This obviates the

need for a separate ADL for modelling software systems.

Although UML provides some (limited) support for modelling technical infrastructure, well-

defined modelling languages at this level are nearly non-existent.

 4 T E L E M A T I C A I N S T I T U U T

1 Introduction

This document is concerned with current practice in architectural modelling of organisations

and applications, either in separation or combined. Figure 1-2 gives an overview of topics

covered and their relationships. We pay special attention to how the elements of existing

frameworks and languages can be used to help to reach the goals of the ArchiMate project.

1.1 Target group

This state of the art is intended for domain architects, enterprise architects, project

managers of projects that use and create architecture, and for their managers (senior

management). The goal of this report is to inform ArchiMate participants about the current

state of the art in architectural frameworks and description techniques, and their relevance

for ArchiMate.

1.2 Posit ion of this work in ArchiMate

Because architectures are often complex and hard to understand, architects need ways to

express these architectures as clearly as possible: both for their own understanding and for

communication with other stakeholders, such as system developers, end-users and

managers. To date, there is no standard language for describing architectures; they are

often described in informal pictures that lack a well-defined meaning. This leads to

misunderstandings, and makes it very difficult to provide tools for visualisation and analysis

of these architectures.

Figure 1-1 illustrates the position of models within the scope of the project. Models

described in a common ArchiMate language are the basis for different types of visualisation

and analysis, which are the primary means for stakeholder communication. Different models

and descriptions currently in use by architects, both at the business level and the application

level, can be either mapped onto the common language or linked to the ArchiMate models.

Architects Stakeholders

ArchiMate

models

Visualisation

techniques

Analysis

techniques

Figure 1-1. Scope of the ArchiMate project

Because of this central position of the ArchiMate language amidst other languages, it is

important to have a clear overview of the different languages used by architects. The most

 A R C H I M A T E / D 2 . 1 5

useful modelling concepts of these languages, or generalisations thereof, are incorporated

in our language. Also, the ArchiMate language should be sufficiently generic and flexible to

allow for mappings to the concepts of other languages. To obtain this overview, this report

presents the current state of the art in architecture description, and as such it is the starting

point for the conceptual work in ArchiMate. In particular, it is input for the definition of

concepts (deliverable D2.2.1), as well as their representation and viewpoints (deliverable

D2.2.2) and the mapping to partner-specific concepts (deliverable D2.2.3).

1.3 Working process

The work compiled here is the result of a two-stage process. In the first stage the basic

material was gathered and assembled, in the second stage this report was created and

supplemented with a management summary and an introduction. The basic material will be

made available in a web-based application (called the ArchiMate Resource Tree - ART)

combined with the basic material collected for the State of the Art in Architecture Concepts

and Descriptions (D3.1).

1.4 How to read this document

From the very start, we have to stress that this document (and especially the web-based

application the ArchiMate Resource Tree) should be regarded more as an “architecture

encyclopaedia”. Our goal was to make available, in very condensed manner, information

(and proper references to more detailed information) about a large number of topics that will

be beneficial not only for target group of this document, but also for the research work in all

the tasks within ArchiMate. Apart from the fact that the topics and the topic-related

information were selected to meet the specific needs of ArchiMate (as stated in the project

plan), we have also tried to express our opinion about the value and relevance of this

information for the project. However, since many of the topics are indirectly related, there is

a high risk that, while reading this document from the beginning to the end, the reader might

miss the continuity of the discourse, and might find some of the subjects more interesting

than others. Therefore, we recommend the reader to look at this document as a structured

collection of various subjects, and possibly to select only chapters/sections (topics) that

he/she finds interesting. In general, each chapter can be read in isolation from the others

(this is even more obvious for ART). This also holds for the sections of one particular

chapter, but in this case the reading of the introduction of that chapter should precede the

reading of any of its sections.

1.5 Document structure

Figure 1-2 shows the topics addressed in this document and the relationships between

them.

 6 T E L E M A T I C A I N S T I T U U T

Framework

Architecture

description

laguage

Organisation/

process modelling

laguage

structures/classifies

Application/

system modelling

laguage

Metamodel
defines

extends
Method

uses

Modeling

technique/

laguage
uses

Figure 1-2. Overview of topics

Frameworks provide a structure to classify or compare modelling techniques. They typically

define a number of conceptual domains or aspects to be described. Figure 1-3 shows a

number of domains that are often distinguished, divided in three ‘levels’. Many frameworks

are associated with a (development) methodology (see ArchiMate deliverable D3.1 see

Iacob et al. 2002). A metamodel (formally) defines the concepts of a language and their

relationships. As a metamodel at a certain level of abstraction may also define the

conceptual domains covered by a language, it could be considered an extension of a

framework. The next chapter gives an overview of a number of well-known architectural

frameworks.

Business

level

Application

level

Behaviour

domain

Technology

level

Information/

data domain

Organisation

domain

Application

domain

Technical

infrastructure

domain

Product

domain

Figure 1-3. Conceptual domains

Traditionally, business modelling and software architecture are separate disciplines.

Although there is a trend towards considering the relationship between the organisational

processes and the information systems and applications that support them (often referred to

as “business-IT alignment”), modelling techniques to really express this relationship hardly

exist yet.

Therefore, we describe the two classes of modelling techniques in two separate chapters.

Chapter 3 focuses on organisation and process modelling languages, while Chapter 4

considers application and technology modelling languages. Although UML, the dominant

language in the latter category, is also claimed to be suitable for business process

modelling, its practical application is still very much restricted to the software domain.

 A R C H I M A T E / D 2 . 1 7

For each language that we describe, the aspects that we take into account include:

�� Their background, scope and current usage.

�� Their concepts and the conceptual domains (see Figure 1-3) that they cover.

�� The structuring mechanisms that they provide. Structuring mechanisms are essential for

readable, scalable models, and it can be argued that they form one of the most important

properties of architectures.

�� The availability of a formal basis, which is needed for an unambiguous meaning of

models, as well as for analysis, visualisation and mappings to other languages.

�� Their support by means of methods and software tools.

 8 T E L E M A T I C A I N S T I T U U T

2 Architectural frameworks and standards

Frameworks structure architectural description techniques by identifying and relating

different architectural viewpoints and the modelling techniques associated with them. They

do not provide the concepts for the actual modelling, although some frameworks are closely

connected to a specific modelling language or set of languages. Many frameworks have a

close link with a design method.

This chapter gives an overview of the available architecture frameworks. We are going to

present in more detail the ones that we consider of higher relevance for ArchiMate (the

Zachman Framework, RM-ODP, OMG-MDA, RSD and TOGAF). For the others (4+1, Nolan

Norton, GERAM, C
4
ISR) one can refer to Section 2.6 for brief descriptions. More information

about all these frameworks the reader can find in ART. Finally, in Section 2.7 we give a

framework summary overview (in the form of Table 2-2).

2.1 Zachman’s framework

In 1987, Zachman introduced his “Framework for Enterprise Architecture” (see Zachman

1987), although back then it was called “Framework for Information Systems Architecture”.

The framework as it applies to Enterprises is simply a logical structure for classifying and

organising the descriptive representations of an enterprise that are significant to the

management of the enterprise as well as to the development of the enterprise's systems.

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM

MODEL
(LOGICAL)

TECHNOLOGY

MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING

ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.

Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity

Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity

Reln = Business Relationship

List of Things Important

to the Business

ENTITY = Class of
Business Thing

List of Processes the

Business Performs

Function = Class of

Business Process

e.g. Application Architecture

I/O = User Views

Proc .= Application Function

e.g. System Design

I/O = Data Elements/Sets

Proc.= Computer Function

e.g. Program

I/O = Control Block

Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process

I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Business Logistics
 System

Node = Business Location

Link = Business Linkage

e.g. Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. Technology Architecture

Node = Hardware/System
Software

Link = Line Specifications

e.g. Network Architecture

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
MODEL

(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF
CONTEXT)

Sub-

Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition

Means = Step

e.g. Rule Design

End = Condition

Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective

Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle

Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event

Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit

Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User

Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

John A. Zachman, Zachman International (810) 231-0531

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY
ENTERPRISE

e.g. Business Plan

TM

Figure 2-1: The Zachman Framework.

The framework (Figure 2-1) in its most simple form depicts the design artefacts that

constitute the intersection between the roles in the design process, that is, owner, designer

 A R C H I M A T E / D 2 . 1 9

and builder; and the product abstractions, that is, what (material) it is made of, how

(process) it works and where (geometry) the components are, relative to one another.

Empirically, in the older disciplines, some other "artefacts" were observable that were being

used for scoping and for implementation purposes. These roles are somewhat arbitrarily

labelled planner and sub-contractor and are included in the framework graphic that is

commonly exhibited.

From the very inception of the framework, some other product abstractions were known to

exist because it was obvious that in addition to what, how and where, a complete

description would necessarily have to include the remaining primitive interrogatives: who,

when and why. These three additional interrogatives would be manifest as three additional

columns of models that, in the case of Enterprises, would depict: who does what work,

when do things happen and why are various choices made.

Advantages of the Zachman framework are that it is simple - it is easy to understand: not

technical, purely logical; comprehensive - it addresses the enterprise as a whole and any

issues can be mapped against it to understand where they fit; neutral - it is defined totally

independently of tools or methodologies. An important drawback is the large number of

cells, which is an obstacle for the practical applicability of the framework. Also, the relations

between the different cells are hardly specified. More about the Zachman framework can be

found in Zachman (1987) and Sowa and Zachman (1997), and at the home page of the

Zachman Institute for Framework Advancement (ZIFA, http://www.zifa.com/).

2.2 Reference Model for Open Distr ibuted Processing

The Reference Model for Open Distributed Processing (RM-ODP) is an ISO/ITU Standard,

which defines a framework for architecture specification of large distributed systems. The

standard aims to provide support for inter-working, interoperability, portability and

distribution, and therefore to enable the building of open, integrated, flexible, modular,

manageable, heterogeneous, secure and transparent systems (see also Putman 1991). The

standard has four parts:

�� Part 1: Reference, containing a motivational overview of the standard and its concepts

(see ITU 1996).

�� Part 2: Foundations, defining the concepts, the analytical framework for the description

of ODP systems and a general framework for assessment and conformance (see ITU

1995a).

�� Part 3: Architecture, describing the ODP framework of viewpoints for the specification of

ODP systems in different viewpoint languages (see ITU 1995b).

�� Part 4: Architectural semantics, showing how the modelling concepts from Part 2 and

the viewpoint languages from Part 3 can be complemented in a number of formal

description techniques, such as LOTOS, Estelle, SDL, and Z (see ITU 1997).

All parts of the RM-ODP are based on the object-oriented paradigm. In Figure 2-2 we

present the structure of RM-ODP.

 1 0 T E L E M A T I C A I N S T I T U U T

Basic modelling

concepts:

object, action,

interface,

 interaction

Specification

concepts:

composition,

decomposition,

role, type, class,

templates

Structuring

concepts:

groups, policies,

naming, behaviour,

communication

ODP Foundation

Viewpoints

Viewpoints languages

Enterprise Information Computational Engineeering Technology

Conformance Framework

Distribution Framework

Transparencies, Functions

Figure 2-2. Structure of RM-ODP

The ODP foundation consists of a set of basic modelling concepts defining the general

ODP object-model (e.g. object, action, interaction), a set of specification concepts (e.g.

composition, role, type, class) and a set of structuring concepts addressing recurrent

structures in ODP systems (e.g. groups, policies, behaviour).

Part 3 of RM-ODP defines five viewpoints on the system and its environment. A summary

of the ODP viewpoints is presented in Table 2-1.

Viewpoint Enterprise Information Computational Engineering Technology

Focus Enterprise needs

with respect to IS

Information models,

structures, flows,

manipulation

Logical structuring of

applications, components,

interfaces and interactions;

service oriented view of

distributed applications

Distributed platform

infrastructure, distribution

transparency,

communication support,

system-oriented view of

distributed applications

Technological artifacts for

the underlying supporting

infrastructure of the

engineering mechanisms

Main

concepts

Agents, artifacts,

communities,

contracts, roles

Invariant, static and

dynamic schemas,

relations, integrity,

roles, etc.

Computational object,

computational interface,

operation stream, signal,

actions

Channels, clusters,

capsules, nodes, basic

engineering objects,

protocol object, nucleus

Technological solutions

Language/

Notation

UML use case

diagrams, activity

diagrams,

stereotyped class

diagrams

UML type/class

diagrams, OCL,

Entity relationships

models, conceptual

schemas

UML collaboration

diagrams, OCL,

Application and

programming

environments

UML collaboration

diagrams, deployment

diagrams, distributed

platforms

Technology mappings

Targets Capture of

requirements and

early design of ODP

systems

Conceptual design

and information

modelling

Software design and

development

System design and

development

Technology identification,

procurement installation

Table 2-1. RM-ODP viewpoint summary

ODP defines a framework for assessment of a systems conformance to its specification.

The purpose is to ensure well-defined behaviour of ODP components possibly delivered

from different vendors. A conformance assessment may consider the conformance between

specifications and implementations and the compliance and consistency between

specifications, and it is based on a set of conformance points that can be observed and

tracked during execution.

ODP also presents a framework for defining infrastructures supporting distribution

transparencies for applications. The goal is to mask complexity of distribution for client

 A R C H I M A T E / D 2 . 1 1 1

applications. ODP defines the following transparencies: access transparency, failure

transparency, location transparency, migration transparency, relocation transparency,

replication transparency, persistence transparency, and transaction transparency.

2.3 Rapid Service Development framework

The Rapid Service Development (RSD) methodology defines an integrated framework for

the specification and development of e-business services. The development of such

services is highly complex, as it involves many different aspects ranging from high-level

strategic business concerns to low-level protocol definitions. In order to deal with this

complexity, the ‘separation of concerns’ principle is applied. The RSD framework

distinguishes seven different aspect areas, called cornerstones, from which models and

specifications can be made. In this way, one can focus on one set of concerns at a time,

resulting in a lower (perceived) complexity. The RSD methodology provides well-defined

links between the cornerstones and offers an integrated framework for business-driven

design of transaction services.

The seven cornerstones of the RSD are structured along two dimensions, as illustrated in

Figure 2-3. A distinction is made between business-oriented models (on the left) and

technology or system oriented models (on the right). Secondly, models can vary in scope or

granularity. They range from high-level, broad-scope, coarse-grained models (at the top) to

low-level, narrow scope, fine-grained (at the bottom).

Ambition & Scope

Protocols

Systems

System

Components

Networked

Enterprise

Transaction

Scenarios

Procedures

Business design Technical design

Figure 2-3. The RSD architectural framework

In addition, there is an implicit third dimension, the development dimension, ranging from

analysis, through design, to realisation, which is visible in the lifecycle models proposed by

RSD (see Fielt et al. 2000, Janssen and Steen 2000). The third dimension is orthogonal to

the other two: development can take place in any of the cornerstones. On the business-

oriented side, several types of models are considered describing the way organisations co-

operate in a networked enterprise: networked enterprise models, transaction scenarios, and

procedures. On the system-oriented side, the technology that supporting the co-operation

between organisations in a networked enterprise is modelled and designed: system

descriptions, component specifications, and protocol and code specifications.

 1 2 T E L E M A T I C A I N S T I T U U T

2.4 OMG’s Model Driven Architecture

The Model Driven Architecture (MDA) (see Architecture Board ORMSC 2001) is a

trademark of the Object Management Group (OMG, http://www.omg.org/), which aims to

provide an open, vendor-neutral approach to interoperability. It builds upon OMG’s

modelling standards: the Unified Modelling Language (UML), the Meta Object Facility

(MOF) and the Common Warehouse Metamodel (CWM). Platform-independent application

descriptions built with these standards can be realised using different open or proprietary

platforms, such as CORBA, Java, .NET, XMI/XML and web services. Figure 2-4 illustrates

how the OMG standards fit together in the MDA.

Figure 2-4. OMG’s Model Driven Architecture

In the MDA, a distinction is made between platform-independent models (PIMs) and

platform-specific models (PSMs). A PSM specifies, in a platform-specific way, how the

functionality specified in a PIM is realised. The PIMs provide formal specifications of the

structure and function of the system that abstract from the technical details. A platform-

independent component view describes computational components and their interactions in

a platform-independent manner.

UML is used as the modelling standard for both PIMs and PSMs. A complete MDA

specification consists of a definitive platform-independent base UML model and one or more

PSMs and interface definition sets, each describing how the base model is implemented on

a different middleware platform. A complete MDA application consists of a definitive PIM,

plus one or more PSMs and complete implementations, one on each platform that the

application developer decides to support.

One of the key features of the MDA is the notion of mapping. A mapping is a set of rules

and techniques used to modify one model to get another model. In certain restricted

situations, a fully automatic transformation from a PIM to a PSM may be possible. In most

situations, however, human intervention is required. For the mapping to the different

middleware platforms, UML profiles are used. An UML profile for OMG’s CORBA is

available, while profiles for several other platforms are under development. The UML profile

for Enterprise Distributed Object Computing (EDOC) is expected to become a key element

of MDA, providing a specification metamodel for enterprise systems (see section 4.1).

 A R C H I M A T E / D 2 . 1 1 3

2.5 The Open Group Architectural Framework

The Open Group Architectural Framework (TOGAF) originated as a generic framework and

methodology for development of technical architectures, but evolved into an enterprise

architecture framework and method (http://www.opengroup.org/togaf/). Version 8 of TOGAF

(which became public in December 2000) it is called the “Enterprise edition” and is

dedicated to enterprise architectures.

Building
Blocks

Information
Base

(architecture

building blocks

- future)

Standards
Information

Base

(standards)

Technical
Reference
Model

(services

taxonomy)

Architecture Development Method

Resource Base

Target

Architectures

TOGAF
Foundation
Architecture

Figure 2-5. TOGAF

TOGAF has four main components:

�� A high-level framework, based on some of the key concepts. The framework considers

an overall Enterprise Architecture as composed of four closely interrelated

Architectures: Business Architecture, Data/information Architecture, Application

Architecture, and Technology (IT) Architecture.

�� A methodology called Architecture Development Method (ADM), considered to be the

core of TOGAF, and a step-by-step approach to developing an IT architecture.

�� The TOGAF Foundation Architecture, which comprises a Technical Reference Model,

The Open Group's Standards Information Base (SIB) and The Building Blocks

Information Base (BBIB).

�� The TOGAF Resource Base - a set of tools and techniques available for use in applying

TOGAF and the TOGAF ADM (Architecture views, Business scenarios, ADML, Case

studies, etc.).

The main components of the TOGAF framework are depicted in Figure 2-5. Apart from

these components, TOGAF identifies a number of views, which are to be modelled in an

architecture development process. The architecture views, and corresponding viewpoints

fall into the following categories (the TOGAF taxonomy of views is compliant with the

ANSI/IEEE Std 1471-2000, see IEEE Computer Society 2000):

�� Business Architecture Views, which address the concerns of the users of the system,

and describe the flows of business information between people and business processes

(e.g. People View, Process View, Function View, Business Information View, Usability

View, Performance View).

�� Technical Architecture Views, which address the concerns of technicians responsible

for developing, acquiring, and operating the system, and in turn comprise:

 1 4 T E L E M A T I C A I N S T I T U U T

��Engineering Views, addressing the concerns of System and Software Engineers

responsible for developing and integrating various components of the system (e.g.

Security View, Software Engineering View, Data View, System Engineering View,

Communications Engineering View).

��Operations Views, addressing the concerns of systems administrators and systems

managers

��Acquirers Views, addressing the concerns of procurement personnel responsible for

acquiring the commercial-off-the-shelf (COTS) software and hardware to be included

in the system (e.g. The Building Blocks Cost View, The Standards View). These

views typically depict building blocks of the architecture that can be purchased, and

the standards that the building blocks must adhere.

2.6 Other frameworks

The 4+1 View Model of Architecture: The 4+1 View Model (Kruchten 1995) describes the

architecture of software-intensive systems using five concurrent views each of which

addresses a specific set of concerns:

�� Logical View: The logical view primarily supports the functional requirements; the

services the system should provide to its end users.

�� Process View: The process view addresses topics such as non-functional requirements

(e.g. performance and system availability), concurrency and distribution, system integrity,

and fault-tolerance, and it specifies which thread of control executes each operation of

each class identified in the logical view.

�� Development View: The development view focuses on the organization of the software

modules in the software-development environment.

�� Physical View: The physical view is mostly devoted to the system non-functional

requirements such as system availability, reliability (fault-tolerance), performance

(throughput), and scalability.

�� Scenario View: This is the “+1” view of the framework. Its purpose is to illustrate and

validate how the other four views are working together using a small set of scenarios.

Architects capture their design decisions in four views and use the fifth view to illustrate and

validate the other four. The definition of each view consists of a description, a notation for

the description of the view blueprint, a recommended style and an example.

Nolan Norton Framework (Zee, Laagland, and Hafkenscheid 2000): This framework is the

result of a research project of the Nolan Norton Institute (that involved 17 Dutch large

companies) on the current practice in the field of architectural development. Based on the

information collected from companies the authors have defined a five-perspective vision of

enterprise architecture:

�� Content and goals: which type of architecture is developed, what are its components

and the relationships between them, what goals and requirements has the architecture to

meet. More precisely, this perspective consists of five interconnected architectures (they

correspond to what we have called architectural views): product architecture, process

architecture, organisation architecture, functional information-architecture, and technical

information architecture.

�� Architecture development process: what are the different phases in the development of

an architecture, what is their sequence and what components have to be developed in

each phase.

 A R C H I M A T E / D 2 . 1 1 5

�� Architecture process operation: what the reasons for the change, what information is

needed and where lies the responsibilities for decision making.

�� Architectural competencies: what level of expertise should the organisation reach (and

how) in order to develop, implement and use an architecture.

�� Cost/Benefits: what are the costs and benefits of developing a new architecture.

GERAM: GERA - Generic Enterprise Reference Architecture - defines the enterprise related

generic concepts recommended for use in enterprise engineering and integration projects.

These concepts can be categorised as:

a) Human oriented concepts: to describe the role of humans as an integral part of the

organisation and operation of an enterprise and to support humans during enterprise

design, construction and change.

b) Process oriented concepts for the description of the business processes of the

enterprise;

c) Technology oriented concepts for the description of the business process supporting

technology involved in both enterprise operation and enterprise engineering efforts

(modelling and model use support).

The model proposed by GERAM has three dimensions: the lifecycle dimension (see the

lifecycle model of GERAM), the instantiation dimension allowing for different levels of

controlled particularisation, the view dimension with four views: Entity Model Content view,

Entity Purpose view, Entity Implementation view, and Entity Physical Manifestation view.

Each view is further refined and might have a number of components (see IFIP-IFAC 1999)

C
4
ISR: The Command, Control, Communications, Computers, Intelligence, Surveillance,

and Reconnaissance (C
4
ISR) Architecture Framework (see C4ISR Architecture Working

Group 1997) was developed in 1997, for the US Department of Defence, to ensure a

common unifying approach for the Commands, military Services, and Defence Agencies to

follow in describing their various architectures. Although C
4
ISR has a rather specific target,

it can be extended to system architectures that are more general. C
4
ISR sees the

architecture description as an integration of three main views: operational view, system view

and technical view. A number of concepts and fundamental definitions (e.g. architecture,

architecture description, roles, and interrelationships of the operational, systems, and

technical architecture views) are provided. Some framework-compliant guidelines and

principles for building architecture descriptions (including the specific product types required

for all architecture descriptions), and a Six-Step Architecture Description procedure

complement them.

2.7 Summary

Table 2-2 summarises the properties of the frameworks that we studied. Although there is a

wide variety in, in particular, the number of views or domains that they distinguish, there is a

large overlap in the types of domains that they include. For ArchiMate, the most important

frameworks to consider are Zachman’s framework (because of its wide acceptance) and

TOGAF (because its views and ideas match with the project goals).

 1 6 T E L E M A T I C A I N S T I T U U T

Table 2-2. Summary of frameworks

Name Purpose Architectural Views/Viewpoints Viewpoints

representations

Main concepts Comments Relevance

for

Archimate

Zachman's

Framework

"Framework for

Enterprise

Architecture"

2-dimensional (column - aspects, rows -

perspectives) 30 cell collection of viewpoints

A certain type of

diagram has been

associated to each cell,

no languages or

particular notations are

specified.

aspects (data-what, function-

how, network-where, people-

who, time-when, motivation-

why), perspectives (scope,

enterprise model, system

model, technology model,

detailed representations),

rules.

simple,

comprehensive,

neutral, well-

known

�����

RM-ODP Framework for

architecture

specification of

large distributed

systems

enterprise, information, computational,

engineering, technology

UML use-case, activity,

stereotyped class, class,

entity relationships,

collaboration,

deployment diagrams

and technology

mappings

conformance points,

transparancies, agents, roles,

communities, contracts,

artifacts, relations, schemas,

stream, signals, actions,

channels, clusters, capsules,

nodes etc.

standardised

(ISO/IEC 10746-

1,2,3,4), highly

technical and

complex, object-

oriented

�����

RSD Framework for

specification and

development of e-

business(B2B)

(transaction)

services

cornerstones: ambition&scope, networked

enterprise, transaction scenarios, procedures,

systems, system components, protocols

the networked enterprise

models are organised

along five domains

(actors, roles, functions,

processes, data), each

domain having its own

notation.

cornerstones, actors, roles,

functions, processes, items

simple, neutral,

limited to e-

business

�����

TOGAF Framework for

development of

technical and

enterprise

architectures

Business Architecture Views (People,

Process, Function, Business Information,

Usability, Performance), Engineering Views

(Security, Software, System,

Communications), Operations Views,

Acquirerers Views (Cost, Standards)

ADML is recommended

by TOGAF as a

language for the

development of views

 system, architecture,

architecture description,

views and viewpoints,

model, stakeholders,

concerns

comprehensive,

neutral, standard

compliant (IEEE

1471), well-

known

�����

"4+1" Framework for

software-

intensive systems

architectures

Logical View, Development View, Process

View, Physical View, Scenario View

Each view is

accompanied by a

specific notation for the

development of a "view

blueprint". Some of the

views use the Rational

(Booch) notations or

derivates

object, class, network,

process, message flow, task,

node, scenario, use-case,

view, style

very much

related to the

Rational

approach,

simple, limited

to software

architectures,

object-oriented

�����

Nolan

Norton

Dutch framework

for enterprise

architectures

5 perspectives: Content and goals,

Architecture development process,

Architecture process operation, Architectural

competencies, Cost/Benefits

For the product, process,

organisation, and

information architectures

(parts of Content and

Goals perpective) a 2D

template is provided.

product architecture, process

architecture, organisation

architecture, functional

information-architecture, and

technical information

architecture

used (known)

only in The

Netherlands,

neutral,

comprehensive

�����

 A R C H I M A T E / D 2 . 1 1 7

3 Organisation and process modelling languages

A wide variety of organisation and process modelling languages are in use: there is no

standard for models in this domain. The conceptual domains that are covered differ from

language to language. Software tools are an important success factor for a language; some

of the most popular languages are proprietary to a specific tool. This chapter gives an

overview of the available organisation and process modelling languages. We are going to

present in more detail the ones that we consider of higher relevance for ArchiMate (the

Amber and NEML, IDEF, ARIS). For the others (RAD, MEMO) one can refer to Section 3.4

for brief descriptions. More information about all these frameworks can be found in ART.

Finally, in Section 3.5 we give a summary overview of the surveyed languages (in the form

of Table 3-1).

3.1 AMBER and NEML

Background, scope, and usage: Amber and NEML (Networked Enterprise Modelling

Language) are organisation/process modelling languages aiming to cover the business

level. In Amber the focus is on a single organisation, particularly from the financial sector,

while NEML is targeting inter-organisational e-business processes in networks of

organisations. They are mostly suited for business consultants and intended for business

process and organisation modelling. In this section we primarily describe Amber, as it is the

more mature of the two. The references to NEML emphasise the differences between the

two languages, or the additional features embedded in NEML.

Both languages have a research background, developed at the Telematica Instituut. The

Testbed business partners, including ABP and Belastingdienst, have contributed with

requirements and took part in the validation of Amber. Currently there is commercially

available software, Testbed Studio, that supports Amber. NEML is also supported by a tool

called RSD Studio, but this still is solely a research product. Consequently, the usage of the

two languages is significantly different: Testbed Studio currently runs in a number of big and

rather different Dutch companies (in terms of business model, size and structure), while

RSD Studio has been used only internally within the Telematica Instituut.

Concepts and Conceptual Domains: Amber recognises three aspect domains:

1. the actor domain: describes the resources for carrying out business activities;

2. the behaviour domain: describes the business processes performed by the resources;

3. the item domain: describes the data objects handled by business processes.

A mapping of Amber onto the domains described in the introduction (see Figure 1-3) results

in the following:

�� Organisation domain: Represented in Amber by the actor domain. Main concepts:

actors (persons, organisational units), interaction points (see Figure 3-1 for the graphical

representation of concepts). In NEML the organisation domain also includes the role

diagrams (main concepts: actors, channels, roles and flows).

 1 8 T E L E M A T I C A I N S T I T U U T

bank

mail

mail

mail

bank

Insurant [*]
Insurance Company

Applications
Department

Claims
Department

Treasury
Department

Figure 3-1. Amber actor diagram

�� Behaviour domain: Represented in Amber by the behaviour domain. The basic concepts

in the behaviour domain: actions, causality relations, and/or splits and joins, iterations,

triggers, and enabling and disabling relations, behaviour blocks (processes) and

interactions (see Figure 3-2 for graphical representations).

trigger

action

item

and-split

and-join

or-split

or-join

iteration

disabling relation

enabling relation

behaviour

block

interaction

trigger

action

item

and-split

and-join

or-split

or-join

iteration

disabling relation

enabling relation

behaviour

block

interaction

Figure 3-2. Amber basic concepts in the behaviour domain

The item concept (corresponding to data objects – e.g. databases) links the behaviour

domain to the item domain. There are a number of operations that can be performed on

items (see Figure 3-3).

read delete
read/

modify
create

item

modify

* †

Figure 3-3. Items and actions

All these concepts are used for process modelling in the form of logical chains of event

driven actions. NEML have introduced several important modelling concepts concerning

behaviour, not covered by Amber: transfer (directed interaction), function, and flow.

While process models in NEML are almost identical to the ones in Amber, the functional

diagrams are completely new (see Figure 3-4).

 A R C H I M A T E / D 2 . 1 1 9

tracking and tracing

order changing
and cancelling

billing
and payment

order
fulfillmentordering

product
selection

catalogue
management

authorisation management

Figure 3-4. NEML function diagram

�� Information/data domain: Represented in Amber by the Item domain. Main concepts:

data type, attributes, specialisation, aggregation, and decomposition relations between

data types. The notation used in this domain is a subset of UML class diagram notation.

�� Product domain, Application domain, and Technological infrastructure domain: not

covered.

In addition to the domains of Amber, NEML supports the function and role domains and

defines a number of supplementary concepts (and corresponding graphical notations) like:

function, role, transfer etc.

Amber and NEML are graphical languages. Part of their graphical notations is given in

Figure 3-1, and Figure 3-2. However, one can also see an example of behaviour model in

Figure 3-5.

Claim Notification of rejection Notification of acceptance Payment

receive
claim

process
claim

reject
claim

submit
notification

pay

Figure 3-5. Example of process in Amber

Views are used to generate feature overviews of models. For instance, colour views

emphasise certain aspects of the model. Other views generated by Testbed Studio visualise

precedence relations, dataflow, or the assignment of behaviour to actors. Also structural

transformations can illustrate different aspects of a model structure: e.g., an organigram

shows the hierarchical structure of an organisation. A powerful concept is that of process

lanes. A business process model can be automatically structured with respect to any

 2 0 T E L E M A T I C A I N S T I T U U T

attribute. For example, the actions can be structured into a block (sub-process) for every

actor involved, showing the change in responsibility in a process, e.g. to reveal the

handovers between different organisations. Alternative process lane structures are for

example based on the business function associated with an activity, or whether the activity

belongs to the primary or secondary part of the process.

The three domains in Amber can also be seen as specific types of viewpoints. It is important

to note that a complete model always contains representations of all these domains.

Moreover these representations are not isolated from each other and they communicate via

several mechanisms.

Structuring mechanisms: In Amber structuring mechanisms are defined to tackle the

complexity of behaviour models. Examples of such mechanisms are:

�� Grouping (Amber allows actions to be grouped in behaviour blocks) using blocks and

entry and exit points (used when a block separates behaviour between actions)

�� Nesting (Actions, and actors can be nested)

�� Decomposition

�� Replications (for actors, actions, interactions and blocks)

Via these structuring mechanisms Amber favours the development of models at successive

levels of detail. This feature makes the development and the understanding of large models

easier, and induces the scalable character of the language. The same structuring

mechanisms are present in NEML.

Formal underpinnings: Amber and NEML both have formal descriptions of their meta-

models (see Ferreira Pires 1998, Steen et al. 2002). The notation used in both cases is

UML. The purpose of these meta-models is to provide an abstract representation for the

language syntax. Furthermore, each concept is separately defined, using the same UML

formalism. Apart from this, process models are endowed with a number of operational

semantics, having different purposes such as stepwise simulation, model checking, and

quantitative analysis.

Support: Amber and NEML are the modelling languages embedded in two modelling tools:

Testbed Studio and RSD Studio respectively. They are both accompanied by a

methodology for modelling and analysis (see BiZZdesign (2000), Steen et al. (2002), and

http://rsd.demo.telin.nl/analysis/).

Discussion: The focus of Amber is primarily on business process modelling: it misses the

architectural perspective of information systems and the concepts related to this. The

language can be extended to a certain extent through user-defined profiles. Amber was the

starting point for the development of NEML, which inherited most of its features and added

new elements to it. The way the language was defined (via a separate metamodel definition

language) makes it relatively easy to modify the concepts and their representation (like in

NEML).

3.2 IDEF

Background, scope and usage: IDEF is the name of family of languages used to perform

enterprise modelling and analysis (see http://www.idef.com/ and Mayer et al. 1995, IDEF

 A R C H I M A T E / D 2 . 1 2 1

1993, Menzel and Mayer 1998). The IDEF (Integrated Computer-Aided Manufacturing

(ICAM) DEFinition) group of methods have a military background. Originally, they have

been developed by the US Air Force Program for Integrated Computer Aided Manufacturing

(ICAM). Of these methods, IDEF0, IDEF3, and IDEF1X are the most commonly used,

especially by US government agencies and subcontractors. IDEF0 and IDEF1x are

published as standards of the National Institute of Standards and Technology. The number

of participants in the meetings of the IDEF user group are evidence of the widespread

usage of IDEF. Currently, there are 16 IDEF methods, running from IDEF0 to IDEF14:

IDEF0 Function Modelling IDEF7 Information System Auditing

IDEF1 Information Modelling IDEF8 User Interface Modelling

IDEF1X Data Modeling IDEF9 Scenario-Driven IS Design

IDEF2 Simulation Model Design IDEF10 Implementation Architecture Modelling

IDEF3 Process Description Capture IDEF11 Information Artifact Modelling

IDEF4 Object-Oriented Design IDEF12 Organization Modelling

IDEF5 Ontology Description Capture IDEF13 Three Schema Mapping Design

IDEF6 Design Rationale Capture IDEF14 Network Design

IDEF METHODS

Of these methods, IDEF0, IDEF3, and IDEF1X (“the core”) are the most commonly used. In

the next paragraphs we will refer in particular to IDEF0 and IDEF3, as we consider them to

be most relevant for ArchiMate. Their scope covers:

�� Functional modelling - IDEF0: The idea behind IDEF0 is to model the elements

controlling the execution of a function, the actors performing the function, the objects or

data consumed and produced by the function, and the relationships between business

functions (shared resources and dependencies).

�� Process modelling - IDEF3: IDEF3 is captures the workflow of a business process via

process flow diagrams. These show the task sequence for processes performed by the

organisation, the decision logic, describe different scenarios for performing the same

business functions, and enable the analysis and improvement of the workflow.

�� Data modelling - IDEF1X: IDEF1X is used to create logical data models and physical

data models by the means of logical model diagram, multiple IDEF1X logical subject

area diagrams, and multiple physical diagrams.

Overall, the IDEF family of languages are general-purpose modelling languages and

intended to be used by business system designers. For the rest of IDEF languages we one

can find detailed information at http://www.idef.com/default.html.

Concepts and Conceptual Domains: In principle, IDEF covers most of the conceptual

domains. However, only some of the methods are widely used: the ‘core’ of IDEF only truly

covers the behaviour domain and the information/data domain. One can see below the

distribution of the IDEF methods over the conceptual domains:

�� Organisation domain: by IDEF12.

�� Behaviour domain: IDEF0, IDEF3, IDEF2.

�� Information/data domain: IDEF1, IDEF1x, IDEF11.

�� Products domain: products, business services.

�� Application domain: IDEF4-IDEF 10

�� Technological infrastructure domain: partly covered by IDEF14.

 2 2 T E L E M A T I C A I N S T I T U U T

IDEF0: Main concepts. There are five elements to the IDEF0 functional model (see Figure

3-6): the activity (or process) is represented by boxes, inputs, outputs, constraints or

controls on the activities, and mechanisms that carries out the activity. The inputs, control,

output and mechanism arrows are also referred as ICOMs.

Figure 3-6. IDEF0 representation

Figure 3-7 shows an example of IDEF0 model.

Figure 3-7. Example of IDEF0 model

IDEF3: Main Concepts. The IDEF3 Process Description Capture Method provides a

mechanism for collecting and documenting processes. There are two IDEF3 description

modes, process flow diagrams and object state transition network diagrams. A process flow

description captures knowledge of "how things work" in an organization, e.g., the description

of what happens to a part as it flows through a sequence of manufacturing processes. The

object state transition network description summarises the allowable transitions an object

may undergo throughout a particular process. The IDEF3 term for elements represented by

boxes is a Unit Of Behaviour (UOB). The arrows (links) tie the boxes (activities) together

and define the logical flows. The smaller boxes define junctions that provide a mechanism

for introducing logic to the flows (see Figure 3-9).

 A R C H I M A T E / D 2 . 1 2 3

Object state transition network (OSTN) diagrams capture object-centred views of

processes, which cut across the process diagrams and summarise the allowable transitions.

Object states and state transition arcs are the key elements of an OSTN diagram. In OSTN

diagrams, object states are represented by circles, and state transition arcs are represented

by the lines connecting the circles. Other main concepts are: strong transitions, conditions,

transition junctions, and elaborations.

The notation used in IDEF0 and IDEF3 models is graphical. It appears that a disadvantage

of IDEF is the visual appearance of IDEF diagrams (especially the IDEF0 diagrams).

Presley and Liles (1995) mention that they have encountered expressions of aversion from

some reviewers and end users when first presented with an IDEF0 diagram: “The network

of boxes and arrows, along with the size of some models, can cause many users to reject

the model. In our experience, most will overcome this initial reaction if the modelling syntax

is explained to them.” Moreover, they state that beginner modellers might need preliminary

training. In the context of ArchiMate, it is important to note that the IDEF family provides

support for the modelling of several architectural views. However, there are no

communication mechanisms between models. The fact they are isolated hinder the

visualisation of all models as interrelated elements of an architectural system. This also

means that a switch between views is not possible.

Structuring mechanisms: Another characteristic of the IDEF 0 modelling technique is that

each activity and the ICOMs can be decomposed (or exploded) into more detailed levels of

analysis. The decomposition mechanism is also indicated as a modelling technique for units

of behaviour in IDEF 3 (see Figure 3-8 and Figure 3-9 below).

Figure 3-8. IDEF0 decomposition

Formal underpinnings: No formal description of a metamodel or of formal semantics is

provided for IDEF0 and IDEF3.

Support: Method support: Apart from being a collection of languages, IDEF also describes

a method that goes with a particular language. Tool support: IDEF0, IDEF1x and IDEF3

notations are supported by Popkin’s “System Architect” tool. Other IDEF Tool Suppliers:

IDEFine Ltd, Computer Associates, Knowledge Based Systems, Wizdom Systems Inc.,

Meta Software, Advantage Software Limited, Logic Works.

 2 4 T E L E M A T I C A I N S T I T U U T

Discussion: IDEF is widely used in the industry. This indicates that it satisfies within

acceptable limits the needs of the users. However, we want to refer to a rather critical

opinion on IDEF1x (see http://www.aisintl.com/case/idef.html), that raises questions

regarding the suitability of IDEF for the modelling of large systems. The IDEF family is

subject of a continuous process of development and improvement. Still IDEF0, IDEF1x and

IDEF3 are rather stable and rigid languages (http://www.aisintl.com/case/idef.html).

Figure 3-9. IDEF3 decomposition

3.3 ARIS

Background, scope, and usage: ARIS ("Architecture of Integrated Information Systems",

Scheer 1994) is a well-known approach to enterprise modelling. Although ARIS started as

the academic research of Prof. A.W. Scheer, it has now an explicit industrial background. It

is not a standard, but it is very well sold and therefore widespread. In IDS Scheer AG has

sold over 30000 ARIS licences all over the world. In addition to the high level architectural

framework, ARIS is a business modelling method, which is supported by a software tool

("ARIS Toolset"). ARIS is intended to serve various purposes: documentation of existing

business process types, blueprint for analysing and designing business processes and

support for the design of information systems. The tool is intended for system designers.

Concepts and Conceptual Domains: To model business processes within an enterprise

model, ARIS provides a modelling language known as event-driven process chains (EPCs).

An EPC is an ordered graph of events and functions. It provides various connectors that

allow alternative and parallel execution of processes. Figure 3-10 gives an example of

business process model made in ARIS and also presents the graphical notation used in

these models. The main concepts defined in ARIS are: events, functions, control flows,

logical operators, organisational units, interactions, output flows, environmental data,

outputs, human output, message, goal, machine, computer hardware, application software.

 A R C H I M A T E / D 2 . 1 2 5

Manufac-
turing Plan

Manufac-
turing Plan

(Supplier)

Order
Processed

Item

Completed

Order
Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control
CPU

Operator Machine

Material

Item

Legend:

PPC =

Control Flow
Information Flow
Information Services Flow

Material Output FLow

Production Planning and Control Flow

Logical

Operator
“AND"

Event Environ-

mental Data
Output

Organiza-

tional Unit

Computer

Hardware
Goal Machine

Function

Human

Output

Message

Application

Software
Organization Flow/ Resource Flow

Schedule

Completed
Item

Manufac-
turing Plan

Manufac-
turing Plan

(Supplier)

Order
Processed

Item

Completed

Order
Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control
CPU

Operator Machine

Material

Item

Legend:

PPC =

Control Flow
Information Flow
Information Services Flow

Material Output FLow

Production Planning and Control Flow

Logical

Operator

“AND"

Event Environ-

mental Data
Output

Organiza-

tional Unit

Computer

Hardware
Goal Machine

Function

Human

Output

Message

Application

Software

Application

Software
Organization Flow/ Resource Flow

Schedule

Completed
Item

Manufac-
turing Plan

Manufac-
turing Plan

(Supplier)

Order
Processed

Item

Completed

Order
Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control
CPU

Operator Machine

Material

Item

Legend:

PPC =

Control Flow
Information Flow
Information Services Flow

Material Output FLow

Production Planning and Control Flow

Logical

Operator
“AND"

Event Environ-

mental Data
Output

Organiza-

tional Unit

Computer

Hardware
Goal Machine

Function

Human

Output

Message

Application

Software

Application

Software
Organization Flow/ Resource Flow

Schedule

Completed
Item

Manufac-
turing Plan

Manufac-
turing Plan

(Supplier)

Order
Processed

Item

Completed

Order
Documents

Manufacture

Shop

Floor

Work High

Quality

PPC

System

Work

station

Control
CPU

Operator Machine

Material

Item

Legend:

PPC =

Control Flow
Information Flow
Information Services Flow

Material Output FLow

Production Planning and Control Flow

Logical

Operator

“AND"

Event Environ-

mental Data
Output

Organiza-

tional Unit

Computer

Hardware
Goal Machine

Function

Human

Output

Message

Application

Software

Application

Software
Organization Flow/ Resource Flow

Schedule

Completed
Item

Organization Flow/ Resource Flow

Schedule

Completed
Item

Figure 3-10. Events, functions and control flows in ARIS

The ARIS Toolset includes various editors that can be used to design and edit several types

of diagrams. The most important are value added chain diagrams, organisational charts,

interaction diagrams, function trees, and Event-driven Process Chains (EPCs). One can see

an example of an EPC in Figure 3-12. The temporal order of functions and events is from

top to bottom, starting with the events that trigger the process.

Bankbedrijf
Verzekerings-

bedrijf
Klant

Sharing

Figure 3-11. ARIS organisational chart

 2 6 T E L E M A T I C A I N S T I T U U T

Gefiatteerde

aanvragen

Aanvragen

verzekeringen

Controleren

status

Ontvangen

verzekerings-

aanvraag

aanvraag

verzekeringen

Gecontroleerde

status

Genereren

offerte

Aanvullen

gegevens

Versturen

aanvullende

informatie

Registreren

ontvangen

stukken

controleren

status

Ontvangen

stukken

geregistreerd

voldoendeonvoldoende

Versturen

offerte

Ontvangen

offerte

Afleggen

dossiers

Informeren

beeindiging

aanvraag

Ontvangen

informatie

Herinneren

klant

Termijn

verstreken:

geen reactie

Na verstrijken

periode

geen acceptatie

geen acceptatie geen reactie

Ontvangen

herinnering

Offerte

naar

acceptatie

Offerte

ontvangen

Herinnering

ontvangen

Doorsturen

naar

acceptatie

Informatie

ontvangen

Bankbedrij f

Verzekerings-

bedrijf
Bankbedrij f

Bankbedrij f

Bankbedrij f

Bankbedrij f

Bankbedrij f

Bankbedrij f Bankbedrij f

Bankbedrij f

Klant

Klant

Verzekerings-

bedrijf

Bankbedrij f

Klant

Figure 3-12.EPC model in ARIS

Figure 3-11 illustrates the visualisation of a small organisational chart within ARIS. In

summary, the concepts defined in ARIS cover more or less all the conceptual domains.

However, only the organisation, behaviour and information domain can be fully modelled

using ARIS. For the others the coverage is only superficial.

 A R C H I M A T E / D 2 . 1 2 7

�� Organisation domain: organisational charts, organisational units.

�� Behaviour domain: processes, functions, actions, events, goals, interactions, flows.

�� Information/data domain: message, environmental data, output

�� Products domain: human output, output.

�� Application domain: application software.

�� Technological infrastructure domain: machine, computer hardware.

The graphical notation of ARIS is unambiguous and easy to understand and use. While

ARIS allows for various perspectives on the enterprise (the data view, the control view, the

process/function view and the organisation view), the integration of these aspects remains

on a low level. Therefore, the tool does not guarantee the overall integrity of interrelated

models. The tailorability of ARIS is limited to business modelling, and more precisely to

organisational, functional and process modelling. It is very well suited for large models.

ARIS is not extensible.

Structuring mechanisms: On a higher level of abstraction, ARIS allows to model

decomposition of processes. Objects in ARIS have attributes, relations, and participate in

hierarchies.

Formal underpinnings: While there is a formal definition of the syntax of EPCs, EPCs lack

a precise definition of their semantics. The semantics of EPCs is given only roughly (in a

verbal form) in the original publication by Scheer (Scheer 1992). A comprehensive

discussion of the semantic shortcomings of EPCs can be found in Rittgen (2000). This is

also the case for corresponding object models which are specified in a rudimentary

metamodel. For this reason, ARIS lacks a solid formal foundation and is of limited use for

the design of (application) architectures.

Support: ARIS is supported by an architecture framework (an architecture metamodel: “the

ARIS house” and a methodology: the “ARIS phase model”) and a software package: the

ARIS Toolset.

3.4 Other languages

Role Activity Diagrams (RADs) originated through the study of coordination (see Holt,

Ramsey, and Grimes 1983). Although RADS were based originally on Petri-Nets, they are a

variation on the traditional state-transition chart. Designed originally for Business Process

Modelling, they fit the task of modelling components, which realise business rules. RAD’s

focus is on processes, which involve the co-ordination of inter-related activities carried out

by people in organizations using a variety of tools. The notation supports four foundation

classes: Roles - which represent the individual roles in a process, Actions - individual

activities or actions carried out by a role, Entities - data, and structures plus collections of

entities and tables of entities, and Interactions - which allow roles to communicate by object

passing. Concurrent behaviour is modelled by giving a finite-state model for each Role and

by allowing Roles to synchronise by letting them share transitions (Ould 1995, Murdoch and

McDermid 2000).

MEMO is a tool supported and object oriented methodology for analysing and (re-)

designing of business information systems (http://www.uni-

 2 8 T E L E M A T I C A I N S T I T U U T

koblenz.de/%7Eiwi/EM/MEMO/index.html). It is based on a set of modelling languages and

on the various stages of a macro process that are supplemented with heuristics and

techniques (most of them originate in strategic enterprise planning and organisational

analysis/design). More precisely, MEMO proposes three object-oriented modelling

languages: MEMO-OML, MEMO-OrgML and MEMO-SML. The graphical notation, and the

main concepts are common to all languages. The main concepts defined in:

�� MEMO-OML are class, object, attribute, interaction, services, constraints, guards,

triggers, multiplicity.

�� MEMO-OrgML are ProcessType, ProcessUse, ContextOfProcessUse, InputSpec,

OutputSpec and Event.

�� MEMO-SML (Strategy Modelling Language) are abstract strategy, abstract and total

value chain, activity, business unit etc.

The notation used is graphical, very much resembling UML notation. In MEMO there is a

clear separation between the modelling languages and the visual appearance of the

models. The latter is taken care of by the so-called MEMO Center. The MEMO Center,

basically is a user interface, having among other things, the role of providing navigation,

simulation and retrieval mechanisms and of user-friendly diagramming tools. It is thus

obvious that the diagrams (and the various accompanying textual editors) the user can

design while using MEMO Center, are “light” replacements for the graphical notation used

by the MEMO languages. Their sole purpose is to ease the creation and understanding of

the models and to make their appearance more pleasant.

The MEMO modelling languages are highly integrated and support multiple views. The

integration feature (carried out by the MEMO Center) permits the communication between

models created in the different languages of MEMO, and ensures the overall integrity of the

enterprise architecture.

MEMO has a very solid formal support. A meta metamodel defining the meta language used

to specify each of the MEMO modelling languages is provided. Also the several MEMO

languages are hierarchically organised according to a “MEMO Meta-Metamodel”. Further

on, the integration of the MEMO languages is achieved via the sharing of common concepts

and each of the MEMO languages is provided with its own metamodel and with formal

semantic of concepts. MEMO is not commercially available and its use is limited primarily to

scientific research purposes (although it has been applied in real-life cases).

Paradigm (Groenewegen and De Vink, 2002) is a coordination modelling language,

expressing coordination through behaviour (expressed in state transition diagrams) and

behaviour influencing. Coordination as specified through Paradigm might be clarifying for

the problems of behavioural consistency between components within various kinds of

architecture. In addition, Paradigm’s notions can be used to model the coordination of

(business) process migration, providing a smooth transition from the current situation to the

desired situation. As these problems belong to the kernel problems to be addressed in

ArchiMate, the ideas of Paradigm can provide useful input to the ArchiMate language.

Paradigm has been successfully integrated with OMT, one of the predecessors of UML.

Research has shown that Paradigm can also be embedded in UML using statecharts

extended with some new notions.

 A R C H I M A T E / D 2 . 1 2 9

3.5 Conclusions

We have selected for this survey representative current languages in the area of

organisation and process modelling. It is clear that none of them has succeeded to become

“the language”. Overall, there are a number of aspects on which almost all of these

languages score low:

�� the relations between domains (views) is poorly defined, and the models created in

different views are not further integrated;

�� most languages use a non-standard notation (except IDEF which is a standard);

�� most languages have a weak formal support (except MEMO and Amber);

�� most languages miss the overall architectural vision: therefore, from ArchiMate’s point

of view they are limited in scope.

However, ArchiMate can benefit from each of these languages. We highlight some of their

qualities:

�� Amber is used in two ArchiMate client organisations as the main business process

modelling language. It is relatively easy to understand and use. Apart from this,

ArchiMate can use the in-house expertise related to this language.

�� ARIS uses a very simple and attractive notation, which made it very successful.

�� IDEF and RAD are standardised notations.

�� MEMO has a solid formal foundation.

Table 3-1 summarises the main features of all the surveyed languages.

 3 0 T E L E M A T I C A I N S T I T U U T

Table 3-1. Organisation and process modelling languages overview.

Name & Background Scope Main Concepts Structuring

Mechanisms

Model representation

& flexibility

Formal

underpinning

Support Comments Relevance

for

Archimate

AMBER & Neml.

Research background.

Amber is supported by

a commercial tool and

used in The

Netherlands.

Business

process and

organisation

modelling

actor, behaviour, item,

role, action, flow,

relation etc.

grouping,

nesting,

replication,

decomposition

clear and intuitive

graphical notation,

multiple view

languages, extensible

via user profiles

both languages

have formal meta-

models described

in the UML

notation

Testbed Studio,

RSD Studio,

Testbed and

RSD methods

simplicity and clarity of

models, one-to-one

mapping of models to

domains, used by the

clients, limited to business

process modeling, and to

The Netherlands,

extandable, in house

expertise

�����

RAD Originators:

Ould & Roberts 1986,

commercialy

promoted by Praxis &

Coordination Systems

Business

process

modelling

state, action,

interaction, role,

external event,

parallel action etc.

grouping sigle view, simple

graphical notation,

labelling of states is an

option, hardly

extensible and

tailorable

RAD is based on

the formal

language SPML

STRIM,

PRAXIS, Grade

Modeller

accessible, simple,

simplistic,not extendable,

widely known, single view,

no solid formal

underpinnings, not

extensively used

�����

IDEF family. Military

background,

standards, widely used

in industry

Enterprise

modelling and

analysis

input, output,

constraints,

mechanisms, UOB,

logical flows, object

states, state transition

arc

decomposition graphical notation, the

visual apearance of

model is not attractive,

big models are hard to

follow, family of

single view languages,

IDEF1x not suitable

for large systems, less

tailorable and

extesible

no formal

underpinings

supported by

System

Architect and

other tools

comprehensive, good

structuring mechanism,

standard notation, extensive

use in the industry,

supported by several tools,

no integration between

languages, models look

crowded and ard to follow,

not extensible and not

suited for large systems.

�����

ARIS Originator Prof.

A.W. Scheer,

Industrial background

Enterprise

modelling and

analysis

events, functions,

control flows, logical

operators,

organisational units,

interactions, output

flows, environmental

data, outputs, human

output, message, goal,

machine, computer

hardware, application

software

model

decomposition,

hierarchies of

processes

attractive graphical

notation, easy to

follow, multiple view

language, low level of

integration, tailorable,

not extensible

formal definition

of the syntax, no

formalism for

semantics

ARIS Toolset,

ARIS method

simplicity and attractivenes

of models and notation,

accessible, very well suited

for modelling,

commercially successful,

multiple view, limited for

architectural purposes, no

one-to-one mapping of

models to domains, low

integration, weak formal

underpinnings, rudimentary

structuring mechanisms

�����

MEMO, academic

background, not

commercially

available

Modelling and

analysis of

enterprise

information

systems

class, object, attribute,

interaction, services,

constraints, guards,

triggers, multiplicity

associations ,

specialisation,

generalisation

(single and

multiple

inheritance),

subtyping,

decomposition

diagram, process

generalisation

diagram

graphical notation

resembling UML,

separation of

modelling languages

from visual

appearance of models,

user-friendly

diagrammig,

extensible, multiple

view

solid formal

support

MEMO

framework and

methodology,

MEMO Center

(modelling

environment)

multiple-view, integrated

modelling languages, solid

formal foundation,

separation of visualisation

and modelling concerns,

good structuring

mechanisms, coverage of

most of the domains,

complex, very abstract

graphical notation, heavily

OO, usage limited to

academic research purposes

�����

 A R C H I M A T E / D 2 . 1 3 1

4 Application and technology modelling languages

4.1 Unif ied Modell ing Language

The Unified Modelling Language (UML) is an important industry-standard language for

specifying, visualising, constructing, and documenting the artefacts of software systems,

managed by the Object Management Group (OMG). It emerged from the combination of

three existing languages for object-oriented modelling (hence “unified”) with an industrial

origin. In this section, we include the architectural concepts proposed for the next version of

the standard, UML 2.0.

UML is intended to be used by system designers. Consequently, UML models are only clear

to those who have a sound background in computer science, in particular in object-

orientation (see Fowler and Scott 1999). However, leaving out the more technical details,

UML models should be sufficiently understandable for illustrative and explanatory purposes

to business engineers and organisation specialists. Although UML was originally developed

for the design of object-oriented software, its use has expanded to other areas, including

architecture modelling. However, the current version of the language, v1.4, lacks native

support for many architectural concepts.

In response to UML Infrastructure and Superstructure Requests for Proposals (RFP),

several proposals have been submitted. Among these, we judge the proposals by U2

Partners (http://www.u2-partners.org), a consortium of major vendors and users of UML, as

belonging to the most likely candidates.

Concepts: UML is a disturbingly rich combination of eight different visual languages each

having its own (sub)scope of the complete UML scope. Moreover, apart from the component

diagrams and the deployment diagrams, each of the other six languages is in itself a

disturbingly rich combination of visual building blocks. Some of these languages have large

mutual overlap, e.g. activity diagrams and statechart diagrams. The advantage of such

richness is the expressiveness of the language; a serious disadvantage is the readability

and the accessibility of the language. The large numbers of symbols and diagrams make

the learning curve of UML pretty steep for new users. Next to the graphical notation, UML

contains the Object Constraint Language (OCL), a textual language for specifying

constraints on model elements. The meaning of UML diagrams is not always very intuitive

and sometimes requires quite careful study. For an experienced UML user, however, the

language is not too difficult to use. Especially the extensive tool support is very supportive.

The nine types of diagrams in UML 1.4 can be grouped according to three aspects:

�� Structure: class diagrams, object diagrams;

�� Behaviour: use case diagrams, Statechart diagrams, sequence diagrams, collaboration

diagrams, activity diagrams;

�� Implementation: component diagrams, deployment diagrams.

Each diagram type describes a system or parts of it from a certain point of view, and

contains its own symbols. However, the diagram types and UML metamodel are

 3 2 T E L E M A T I C A I N S T I T U U T

interrelated; no strict separation between views and metamodel concepts has been made.

Consequently, the relations between modelling concepts in different diagrams are often ill-

defined. We will not show the notation of all these diagrams and modelling concepts here;

an good overview is given in Fowler and Scott (1999).

Domains: Through object-orientation, UML covers all possible modelling domains one can

think of. From the point of view of UML the world consists of only one kind of component-

like thing, called object, together with a connection-like thing, called link. Examples of

objects are persons, organisational units, products, projects, archives and machines. The

objects consist of a static part and a dynamic part. The dynamic part is a description of how

such an object does what it should do.

The links reflect any kind of connection or relation between objects, varying from concrete

(‘is-boss-of’) to abstract (‘might-be-relevant-for’). In this way links can express relations,

connections, dependencies, relevancies of a physical, logical, temporal, structural,

behavioural, similar or complementary character, to mention a few examples.

UML Infrastructure proposal (see U2 Partners 2002a) defines the foundational language

constructs for UML 2.0. We will not go into this foundation, but rather concentrate on the

higher-level concepts defined in UML Superstructure (see U2 Partners 2002b). Given UML’s

orientation towards software development, these concepts seem especially useful in

modelling application architectures and to some extent the technical infrastructure.

Structural concepts: A Class diagram in UML is used to model the static structure of a

system. A class is a description of a set of objects that share the same attributes,

operations, relationships and semantics, and implements one or more interfaces. The

relations between the classes are dependencies, generalisations and associations, which

represent structural relationships among objects.

Two other static diagrams exist in UML, both for modelling physical aspects of object-

oriented systems. A component diagram models the static implementation view of a system.

This involves modelling the physical things that reside on a component, such as

executables, libraries, tables, files, and documents. A deployment diagram models the static

deployment view of a system, and models the configuration of run time processing nodes

and the components that live on them. This involves modelling the topology of the

hardware, i.e., it models the technological infrastructure domain. Both diagrams are

essentially class diagrams, but a component diagram will focus on system’s components

and deployment diagram on system’s nodes.

Behavioural concepts: UML provides four different views on the behaviour of a system or

organisation. (1) A functionality view by means of use cases, which essentially model

activities without explicitly showing the flow between them. (2) A scenario-oriented view,

using interactions to model communication. (3) Local behaviour view, modelling the full

behaviour of specific elements in the model with state machines. These first three views

come together in the fourth, in which (4) activity diagrams provide an overview of the flow in

the system from activity to activity. A weak point in UML is that it does not address the

consistency between the different behavioural concepts. To show relations between the

 A R C H I M A T E / D 2 . 1 3 3

diagrams, UML depends on the reader’s intuition – based on things like similar labels for

corresponding actions, events, transitions, etc. – rather than semantics.

In modelling cooperation between system elements, two aspects need to be covered: the

structural description of the participants and their communication, i.e., the behaviour they

exhibit. In UML, the structure of the participants, their roles and their relationships are

modelled by a collaboration, and the communication pattern is described by an interaction.

It comprises a set of messages exchanged among a set of objects within a context to

accomplish a purpose. An interaction can be visualized in two ways: emphasising the time

ordering of messages in a sequence diagram, or emphasising the structural organisation of

objects in a collaboration diagram. In UML 2.0 proposal, interactions can also be modelled

in timing diagrams and activity diagrams with interactions. This wide variety of notation for

the same underlying concept allows the designer considerable flexibility. However, the

resulting models (especially the activity diagrams) might confuse the uninitiated. Although

both interactions and collaborations are used to model aspects of the same cooperation, it

appears to be no formal link between the two in UML 2 metamodel.

Structuring mechanisms: UML provides concepts for modelling decomposition of object-

oriented models via aggregation and composition relations between classes (and objects).

UML has different means of refining or globalizing its model parts:

�� the static things in UML can be refined as groups (aggregations) of smaller static things,

or they can be refined as special representatives (specializations);

�� the dynamic things in UML can also be refined (states within statecharts can become

superstates comprising one or more smaller statecharts).

�� although consistency of the different descriptions still is a problem, these refinements

and globalizations allow for zooming in as well as zooming out with respect to a model:

on a detailed scale as well as on a global scale the same kind of descriptions occur.

In addition, UML allows for differentiating between descriptions from outside – black-box-like

– and from inside – white-box-like; interfaces usually make up for outside descriptions; in

this way technical details can be hided without getting lost.

Furthermore, UML has packages and subsystems, allowing for selecting any part of a model

while everything else is being left out; this provides for much freedom in choosing a view

onto a model: a view can comprise everything relevant for a certain user or a certain usage

of the model, or a view can comprise everything relevant for a certain aspect as e.g. statics

or security or coordination.

In particular the combination of the possible structurings is very useful in the light of

scalability, reuse, accessibility for different stakeholders.

Flexibility: To extend the modelling vocabulary or give distinctive visual cues to a certain

kinds of abstractions that often appear, UML offers three kinds of mechanisms that solve

this problem:

�� A stereotype is an extension of the vocabulary of UML that allows the creation of new

kinds of building blocks, based on existing ones. A stereotype is used to define

specialisations of existing elements of UML metamodel.

 3 4 T E L E M A T I C A I N S T I T U U T

�� Tagged value is an extension of the properties of a UML element that allows the creation

of new information in that element’s specification. Tagged values can be added to all

existing metamodel elements.

�� UML offers the possibility to define so-called profiles attuned to certain problem domains.

A profile is a kind of dialect of the original modelling language, better suited to reflect the

characteristics of a certain problem domain. A profile uses tagged values and

stereotypes to express a specific and precise model.

A profile which is particularly relevant for ArchiMate is the profile for Enterprise Distributed

Object Computing (EDOC). Its goal is to provide architecture and modelling support for

collaborative or Internet computing, with technologies such as web services, Enterprise

Java Beans, and Corba components. The EDOC profile was adopted by the OMG as a

standard in November 2001 and will provide model-driven development of enterprise

systems based on the Model-Driven Architecture (MDA, Section 2.4). The EDOC profile

provides a business collaboration architecture, a technology-independent business

component architecture and modelling concepts for describing business processes,

applications, and infrastructure.

Although these extension mechanisms give UML considerable flexibility, they also are a

weak point of the language. Stereotypes, especially when applied too much, can confuse

readers that are not familiar with them. In such cases stereotypes take away one of the

strong points of UML, which is standardisation.

Furthermore, the (formal) consistency between various parts of a UML model being not

defined, the consistency of UML models is still an issue of study and discussion. On an

informal level only, the problem whether some model part fits into the rest of the model, is

now easier to handle.

Formal underpinnings: UML has, only partially, a formal basis. What it is missing is mainly

semantics and consistency in particular. As this is a topic of ongoing and intensive research,

one might expect substantial improvements concerning semantics and consistency within

the not very far future. So analysis and verification of UML models are at the moment

dependent on what tools provide. In particular, some behavioural analysis via animation is

what current tools offer. In other cases, explicit transformations to other formalisms are

being done in order to facilitate verification of properties one wants to establish.

Semantics for individual diagram types exist, in a more or less formal manner. However, a

formalised integrated semantics is still lacking. Work is progressing on this, e.g. by the

precise UML (pUML) group and the Action Semantics task force of the OMG.

The lack of an integrated semantics makes it difficult to provide analytical support for UML.

Analysis is limited to what is permitted within a single diagram, and since the semantics of

UML has not been specified very well in the standard (at least up to v.1.4), rigorous analysis

techniques are difficult to define.

Support: For UML many commercial as well as public domain modelling environments

exist. As UML is so large, most of these do not (yet) cover everything. But they are certainly

improving. As many of these environments offer means to translate a model into executable

 A R C H I M A T E / D 2 . 1 3 5

code – e.g. Java – some form of analysis is being provided: through the execution. Often

also other means of analysis and verification are being provided, through partial consistency

checking, or forms of animation or explicit translation to a different domain where a

particular verification can be performed.

UML 2.0 standardisation process has not yet been concluded. Consequently, tools do not

support this version, and the new architectural concepts most interesting to ArchiMate have

not yet been implemented.

Summary/discussion: UML is the mainstream modelling approach within ICT, and its use

is expanding into other areas. This makes UML an important language not only for

modelling software systems, but also for business processes and for the general business

architecture. However, UML is not accessible and understandable for managers and

organisational specialists; therefore, special visualizations and views of UML models should

be provided. These could be based on existing profiles, on profile ideas currently under

study, or for example on Testbed or Testbed-like representations of business processes.

4.2 Architecture descript ion languages

The term “Architecture Description Language” (ADL) is used to refer to a (usually formal)

language to describe a software architecture in rather general terms. Typically, they

describe an architecture in terms of components and connectors. A large number of ADLs

have been proposed, some for a specific application area, some more generally applicable.

In Medvidovic and Taylor (2000) the basics of ADLs are described, and a large number of

ADLs are compared. Table 4-1 summarises the focus of a number of ADLs (derived from

Medvidovic and Taylor 2000).

Table 4-1. Focus of several ADLs

ADL Focus

ACME Architectural interchange, mainly at the structural level

Aesop Specification of architectures in specific styles

C2 Architectures of highly-distributed, evolvable and dynamic systems

Darwin Architectures of highly-distributed systems whose dynamism is guided by

strict formal underpinnings

Rapide Modelling and simulation of the dynamic behaviour described by an

architecture

SADL Formal refinement of architectures across levels of detail

UniCon Glue code generation for interconnecting existing components using

common interaction protocols

Weaves Data-flow architectures characterised by high-volume of data and real-time

requirements on its processing

Wright Modelling and analysis of the dynamic behaviour of concurrent systems

Although the concepts used in ADLs are very generic, they are mainly applied in the field of

software architecture. In addition to ADLs with a general applicability, there are ADLs with a

 3 6 T E L E M A T I C A I N S T I T U U T

more specific application area (e.g. MetaH, for the guidance, navigation and control

domain). Because of the formal nature and high abstraction level of the concepts, ADLs are

mainly suitable for users with a technical background. They are unsuitable as a means for

communication at the organisational level.

ADLs generally have an academic background, and limited usage. However, the ADL

ACME is widely accepted as a standard to exchange architectural information, also between

other ADLs. There are initiatives to integrate ACME in UML, both by defining translations

between the languages and by a collaboration with OMG to include ACME concepts in UML

2.0. In this way, the concepts will be made available to a large user base and be supported

by a wide range of software tools. In the remainder of this section, we will especially

consider ACME, which can be regarded as a representative of ADLs.

Concepts and representation: In principle, ADL concepts are sufficiently flexible to create

models in several domains. However, they are mainly applied, and are most suitable, for the

application domain (i.e., to describe software architectures). As ACME is claimed to be

suitable as a general architecture interchange language. Therefore, its concepts can be

considered representative for ADLs. The core concepts are:

�� Component

�� Connector

�� System (a configuration of components and connectors)

�� Port (a point of interaction with a component)

�� Role (a point of interaction with a connector)

�� Representation (used to model hierarchical composition)

�� Rep-map (which maps a composite component or connector’s internal architecture to

elements of its external interface)

Many of these concepts are now also proposed for the forthcoming UML 2.0 standard. In

ACME, other aspects of an architectural description are represented with property lists.

In ACME, other aspects of an architectural description are represented with property lists.

Like most ADLs, ACME provides both a textual and a graphical representation of the

concepts, as well as automated support to alternate between them. It also allows for both

top-level and detailed views of composite elements. Support for other views is limited.

infectious-diseases ui

microbiology db

microbiology ui

pharmacy db

pharmacy ui

simple server

trend- tracker

infectious-diseases ui

microbiology db

microbiology ui

pharmacy db

pharmacy ui

simple server

trend- tracker

Figure 4-1. Example of an ACME specification

 A R C H I M A T E / D 2 . 1 3 7

The Architecture Description Markup Language (ADML) has originally been developed as

an XML encoding of ACME. It is being promoted by the OpenGroup as a standard for

enterprise architectures.

Structuring mechanisms: ACME provides features to support hierarchical composition of

components. Architectural refinement is still an open research area, and support for it in

ACME ass well as other existing ADLs is limited.

Flexibility: The basic ACME concepts are very general, and can be made more specific by

adding property lists. The tool AcmeStudio provides a number of different architectural

styles, and allows for the use of specific symbols for specific types of components.

Formal underpinnings: ACME focuses on describing the architectural structure of

systems; it does not provide specific computational semantics for architectures. However, it

uses a so-called open semantic framework, providing a basic structural semantics while

allowing the inclusion of the semantics of specific other ADLs.

Support: Tool support for existing ADLs varies widely. ACME is supported by AcmeStudio

(http://www-2.cs.cmu.edu/~acme/AcmeStudio/), a research tool which is available free of

charge. In addition to creation and editing of graphical ACME specifications, the tool

supports a number of visualisations (e.g. based on the properties of concepts) and simple

performance analysis based on queueing models.

Summary/discussion: A wide variety of Architecture Description Languages (ADLs) exists,

with several differences in the exact concepts that they offer: some focus on structural

aspects of an architecture, while others pay more attention to the dynamic aspects. In

general, their concepts are defined at a rather generic level: although they are usually

intended for modelling the application level, the use of the concepts is not restricted to this.

As a result of this high abstraction level, constructing and reading ADL specifications may

be difficult for non-expert users. An advantage is the precise definition and formal

foundation of the languages, which may make them suitable as an underlying language for

more specific concepts. ACME is of particular interest, as it can serve as a standard for the

interchange of architectural descriptions, and its concepts have been proposed to be

incorporated in UML. Therefore, it is important to make sure that the ArchiMate concepts

are consistent with those of ACME, so that a mapping between them is possible.

4.3 Other appl icat ion model l ing languages

There are several other, usually older, techniques to model applications. Many of them are

used for detailed description of programs or algorithms, and are less interesting from an

architectural viewpoint. Many languages are either incorporated in UML or superseded by

UML. An example of a language which is still in use in many organisations are data flow

diagrams, which describe an information system or application in terms of data stores,

processes and data flows between them.

Some techniques from the IDEF family (see Section 0) also fit into the application modelling

level, in particular IDEF4 and IDEF10. However, as they are not part of the ‘core’ of IDEF,

their use is limited.

 3 8 T E L E M A T I C A I N S T I T U U T

4.4 Technical infrastructure model l ing

As stated in Boar (1999), the technical infrastructure of an organisation is usually

represented in informal pictures. At the very detailed hardware level, more or less formal

description techniques such as VHDL exist. However, at the level of complete systems and

networks, language support is minimal. In Boar (1998), Boar introduces his own technique,

Enterprise IT Architecture Blueprinting (EAB), to fill this gap.

As described in Section 4.1, UML uses the deployment diagram to model nodes in a

technical infrastructure and their connections. IDEF14 (see Section 3.2) can be used to

model a network design, but as it is not part of the “core” of IDEF, its use is not widespread.

Moreover, it is very difficult to find information about the exact contents of the IDEF14

standard.

4.5 Conclusions

In contrast to organisation and business process modelling, for which there is no single

dominant language, in modelling applications and technology UML has become a true world

standard. UML is the mainstream modelling approach within ICT, and its use is expanding

into other areas. This makes UML an important language not only for modelling software

systems, but also for business processes and for the general business architecture.

However, UML is not accessible and understandable for managers and organisational

specialists; therefore, special visualisations and views of UML models should be provided.

Given the importance of UML, other modelling languages will likely provide an interface or

mapping to it. This is also advisable to ArchiMate; it should be possible to describe the

ArchiMate concepts in UML, or to map them to UML by using e.g. stereotypes and profiles.

The concepts used in ADLs are generally well-defined and � although originally intended for

the description of software architectures � broadly applicable. However, because of the

generic concepts which may be difficult to understand for non-expert users, ADLs are more

suitable as an underlying foundation for the ArchiMate language than as a language that is

used for the actual descriptions. ACME, which can serve as a standard for the interchange

of architectural descriptions, is of particular interest. However, UML 2.0 will most likely

comprise more concepts on the architectural level as well, drawing inspiration from

languages like ACME. This may obviate the need for a separate ADL for modelling software

systems.

At the technical infrastructure level, well-defined modelling languages are nearly non-

existent.

 A R C H I M A T E / D 2 . 1 3 9

References

Architecture Board ORMSC (2001), Model Driven Architecture (MDA), J. Miller and J.

Mukerji (eds.). Document nr. ormsc/2001-07-01, July 2001.

BiZZdesign (2000), Handboek Testbed, versie 6.1, juni 2000, Enschede (in Dutch).

Boar, B.H., (1998), Constructing Blueprints for Enterprise I.T. Architecture, Wiley, 1998.

Boar, B.H., (1999), A blueprint for solving problems in your IT architecture, IT Professional,

Nov./Dec. 1999, pp. 23-29.

C4ISR Architecture Working Group (1997), C4ISR Architecture Framework Version 2.0., US

Department of Defense, Dec. 18, 1997.

http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/fw.pdf

Fielt, E., Eijkel, G. van den, Janssen, W., Steen, M., and Oude Luttighuis, P., (2000), Rapid

Service Development Methodology, TI/RS/2000/030, Telematica Instituut, May

2000.

Ferreira Pires, L., Jonkers, H., Lankhorst, M., Quartel, D.A.C., Sinderen, M.J. van, Teeuw,

W., (1998) AMBER - Architecturale ModelleerBouwdoos voor

bEdRijfsprocessen, Testbed project, Testbed/WP3/D3.2/V3.4, Telematica

Instituut, Enschede, March 1998.

Fowler, M., Scott, K., (1999), UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 2nd edition, Addison-Wesley, 1999.

Holt, A.W., Ramsey, H.R., Grimes, J.D., (1983), Coordination system technology as the

basis for a programming environment, Electrical Communication, vol. 57, no. 4,

1983.

Groenewegen, L., and E. de Vink, (2002), Operational Semantics for Coordination in

Paradigm, in F. Arbab and C. Talcott (eds.), Coordination 2002, LNCS 2315, pp.

191-206.

IDEF (1993), Integration Definition for Function Modeling (IDEF0) Draft, Federal Information

Processing Standards Publication FIPSPUB 183, U.S. Department of

Commerce, Springfield, VA 22161, Dec. 1993.

IEEE Computer Society, (2000), IEEE Std 1472-2000: IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems, Oct. 9, 2000.

IFIP-IFAC (1999), IFIP-IFAC Task force on Architectures for Enterprise Integration,

GERAM: Generalised Enterprise Reference Architecture and Methodology,

Version 1.6.3, March 1999 (Published also as Annex to ISO WD15704).

http://www.fe.up.pt/~jjpf/isf2000/v1_6_3.html

Iacob, M.-E., W. Huijsen, D. van Leeuwen, H. ter Doest, H. Bosma, J. Guillen Scholten,

(2002), State of the Art in Architecture Support, M.-E. Iacob (ed.), ArchiMate

deliverable D3.1, Telematica Instituut, Enschede, Nov. 2002.

ITU, (1996) ITU Recommendation X.901 | ISO/IEC 10746-1: Open Distributed Processing -

Reference Model - Part 1: Overview, 1996.

ITU, (1995a), ITU Recommendation X.902 | ISO/IEC 10746-2, Open Distributed Processing

- Reference Model - Part 2: Foundations, 1995.

 4 0 T E L E M A T I C A I N S T I T U U T

ITU, (1995b), ITU Recommendation X.903 | ISO/IEC 10746-3, Open Distributed Processing

- Reference Model - Part 3: Architecture, 1995.

ITU, (1997) ITU Recommendation X.904 | ISO/IEC 10746-4, Open Distributed Processing -

Reference Model - Part 4: Architectural Semantics, 1997.

Janssen, W.M.P. and M.W.A. Steen, (2000), Rapid Service Development: An integral

approach to e-business engineering, in S. Murugesan and Y. Deshpande (eds.),

Proc. 3rd Workshop on Web Engineering at the 9th International World Wide

Web Conference, Amsterdam, the Netherlands, May 2000.

Kruchten, P., (1995), Architectural Blueprints - The “4+1” view model of software

architecture, IEEE Software, vol. 12, no. 6, Nov. 1995, pp. 42-50.

Menzel, C. and Mayer, R.J., (1998), The IDEF family of languages, in P. Bernus, K. Mertins

and G. Schmidt (eds.), Handbook on Architectures of Information Systems, vol. 1

of International Handbooks on Information Systems, chapter 10, pp. 209-241.

Springer Verlag, 1998.

Medvidovic, N. and R.N. Taylor, (2000), A classification and comparison framework for

software architecture description languages, IEEE Transactions on Software

Engineering, 26 (1), Jan. 2000, pp. 70-93.

Mayer, R.J., Menzel, C.P., Painter, M.K., deWitte, P.S., Blinn, T., Perakath, B., (1995),

Information Integration for Concurrent Engineering (IICE) IDEF3 Process

Descrition Capture Method Report, Interim Technical Report April 1992-

September 1995, Knowledge Based Systems Inc.

Murdoch, J. and J.A. McDermid, (2000), Modeling engineering design processes with Role

Activity Diagrams, Transactions of the Society for Design and Process Science,

vol. 4, no. 2, June 2000.

Ould, M.A., (1995), Business processes: Modelling and analysis for re-engineering and

improvement. J. Wiley, Chichester, 1995.

Presley, A. and Liles, D. (1995). The Use of IDEF0 for the Design and Specification of

Methodologies. 4th Industrial Engineering Research Conference, Nashville.

Putman, J.R., (1991), Architecting with RM-ODP, Prentice-Hall, 1991.

Rittgen, P., (2000), A modelling method for developing web-based applications, in Proc. of

International Conference IRMA 2000, Anchorage, Alaska, pp. 135-140.

Scheer, A.-W., (1992), Architektur Integrierter Informationssysteme, 2nd edition. Springer-

Verlag, 1992.

Scheer, A.-W., (1994), Business Process Engineering: Reference Models for Industrial

Enterprises, Springer, Berlin, 2nd ed. 1994.

Steen, M.W.A., M.M. Lankhorst and R.G. van de Wetering, (2002), Modelling Networked

Enterprises, in Proc. Sixth International Enterprise Distributed Object Computing

Conference (EDOC'02), Lausanne, Switzerland, Sept., pp. 109-119.

Sowa, J.F. and J.A. Zachman, (1992), Extending and formalizing the framework for

information systems architecture, IBM Systems Journal, 31 (3), 1992, pp. 590-

616.

U2 Partners, (2002a), Unified Modeling Language: Infrastructure, version 2 beta R2 (draft),

3 June 2002. OMG document ad/02-06-01,

http://cgi.omg.org/cgi-bin/doc?ad/02-06-01.pdf.

 A R C H I M A T E / D 2 . 1 4 1

U2 Partners, (2002b), Unified Modeling Language 2.0 Proposal, version 0.69 (draft), 15

March 2002. OMG document ad/02-04-05, http://cgi.omg.org/docs/ad/02-04-

05.pdf.

Zachman, J.A., (1987), A framework for information systems architecture, IBM Systems

Journal, 26 (3), 1987, pp. 276-292.

Zee, H. van der, Laagland, P. and Hafkenscheid, B. (eds.), (2000), Architectuur als

Management Instrument - Beheersing en Besturing van Complexiteit in het

Netwerktijdperk, 2000. ISBN 90-440-0087-x.

 4 2 T E L E M A T I C A I N S T I T U U T

Index

4+1 View Model, 14
ACME, 35
AcmeStudio, 37
Activity diagrams, 31
ADL, 35
ADML, 37
Aesop, 35
Amber, 17
ArchiMate Resource Tree, 5
Architecture Description Language, 35
Architecture Description Markup Language, 37
ARIS, 24
ARIS Toolset, 24
C2, 35
C

4
ISR, 15

Class diagrams, 31
Collaboration diagrams, 31
Component diagrams, 31
Conceptual domains, 6
Darwin, 35
Deployment diagrams, 31
EAB, 38
EDOC, 12, 34
Enterprise Distributed Object Computing, 12,

34
Enterprise IT Architecture Blueprinting, 38
Framework for Enterprise Architecture, 8
Frameworks, 6, 8
GERAM, 15
IDEF, 20, 37
IDEF0, 21
IDEF1X, 21
IDEF3, 21
MDA, 12
MEMO, 27
Meta Object Facility, 12

Metamodel, 6
Model Driven Architecture, 12
NEML, 17
Nolan Norton Framework, 14
Object Constraint Language, 31
Object diagrams, 31
ODP foundation, 10
OMG, 12
Paradigm, 28
Profiles, 34
Rapid Service Development, 11
Rapide, 35
Reference Model for Open Distributed

Processing, 9
RM-ODP, 9
Role Activity Diagrams, 27
RSD, 11
RSD Studio, 20
SADL, 35
Sequence diagrams, 31
Stakeholders, 4
statechart diagrams, 31
Stereotype, 33
Tagged value, 34
Testbed, 17
Testbed Studio, 20
The Open Group Architectural Framework, 13
TOGAF, 13
UML, 12, 31
UniCon, 35
Unified Modelling Language, 12, 31
Use case diagrams, 31
Weaves, 35
Wright, 35
Zachman, 8

