
1

Model-based service creation in the Friends project

W.B. Teeuw D.A.C. Quartel

Telematics Institute

Enschede, The Netherlands

teeuw@telin.nl

CTIT-University of Twente

Enschede, The Netherlands

quartel@cs.utwente.nl

Abstract—This paper presents a model-based approach to service creation. We observe that the

complexity of software services increases. To manage this complexity, and to quickly create

specific services in an efficient and cost-effective way upon user request, models are used, going

towards ‘higher-level’ programming. A service creation environment is developed that supports

the modelling of services at successive abstraction levels, the analysis of service models, their

actual implementation, and the testing and deployment of service implementations. Services are

assumed to be developed from existing or newly developed software components. Components

are modelled by describing their external behaviour, rather than their interface(s) only. This

provides additional design information facilitating a systematic approach to service creation. This

paper shows how we model services and their constituent components, and how we use these

models.

Key words—Service creation, component-based design, modelling, systems architecting,

behaviour specification.

1. Introduction

In the Friends project, a middleware platform has been built to support the development,

deployment and management of distributed services [FRIENDS]. An important new feature

of this platform is the integrated support for service creation, providing a so-called service

creation environment. Upon user demand, the service creation environment enables a service

developer to design and implement the requested service in an efficient and cost-effective

way. A service is assumed to be composed from software components that conform to the

middleware platform’s underlying component architecture. The service creation environment

promotes the re-use of existing components and supports the development of new

components if needed. To enable rapid service development, the FRIENDS platform includes

generic components supporting access control, authentication (PKI), accounting, performance

monitoring, and QoS management, and multimedia components supporting Audio/Video

streaming and CSCW services.

A model-based approach underlies the service creation environment. We observe that the

complexity of software services increases and the allowed development time of services

becomes shorter. A model-based approach helps to manage this complexity, to structure and

facilitate service development —going towards ‘higher-level’ programming— and to validate

services at design time. An important characteristic of our approach is to model the complete

external behaviour of a component, defining both the operations that can be invoked on its

interfaces and the operations invoked by this component on interfaces of other components,

as well as the relationships between these operations and their parameters.

The purpose of this paper is twofold: to describe our model-based approach and to present

the tool architecture of the service creation environment supporting our approach. A key

element of this tool architecture is the modelling tool Testbed Studio [EJO+99, FrJa98]. This

paper describes how we use this tool to specify and analyse the behaviour of services and

components, and how this tool is integrated in the service creation environment. This paper is

further structured as follows: section 2 describes the Friends middleware platform, section 3

motivates and introduces our model-based approach to service creation, section 4 presents the

tool architecture of the service creation environment and illustrates the use of the tools

identified in this architecture with examples, and section 5 presents our conclusions and

future work.

2

2. The Friends middleware platform

Middleware platforms shield the heterogeneity of underlying operating systems and networks

and provide distribution transparencies to applications [Bern96]. Building such a platform,

Friends does not start from scratch but uses the results of the Mesh project [BBVD99]. Mesh

built a CSCW platform, which complies with the TINA service architecture. Among its

features are network independence, user and session mobility, and the support for multimedia

stream bindings. In Friends, the functionality of this middleware platform is extended and

improved to support not only CSCW applications, but also applications in the area of E-

commerce, entertainment and content engineering.

Characteristic for the Friends platform is an integrated approach to support service users,

providers, and developers (see Figure 1). Given an arbitrary application, e.g., a CSCW

environment for project co-operation, an electronic 'Game Hall' for entertainment, or an e-

commerce environment for B2B transactions, FRIENDS offers services to all three categories

of stake-holders. Video-conferencing, chat, messaging and application sharing are typical

examples of functionality that supports the end-users. Service management, accounting and

billing functionality typically supports the service providers. The functionality provided by

the service creation environment to support service developers is the subject of this paper.

Friends Deployment Platform
(access control, authorisation, accounting, load-
balancing, service invocation/management)

CORBA
+ stream support

Friends
service

Friends
service

Friends
service

....

Component
repository

Service creation
environment

service end-user service provider service developer

Figure 1. Friends integrated platform approach.

An Internet Service Provider (ISP) typically exploits the Friends Deployment Platform.

Alternatively, a retailer (E-tailer) or Application Service Provider (ASP) may exploit the

Friends Platform as a whole, including the Friends services on top of it. An Independent

Software vendor (ISV) typically exploits the service creation environment. In principle,

Friends services may be provided by third parties because they only need to use the

deployment platform APIs.

The Friends Deployment Platform is based on component software [Szyp98]. Its underlying

Distributed Software Component (DSC) architecture defines the minimal rules and

constraints a component should adhere to, in order to achieve some minimal level of

interoperability with other components [BaBa98]. DSC was developed as a proprietary

component architecture because at that time no alternative existed. Recently the CORBA

Component Model emerged [CCM99], and DSC will be migrated to this component

architecture. The DSC framework implements the DSC architecture. The framework defines

amongst others the representation in which the component stores its implementation and its

specification. The Friends Deployment Platform has been implemented in Java and uses

CORBA to support the interaction between distributed components.

3. Service creation: the need for a model-based approach

We define a service as the external observable behaviour of a system, which consists of the

interactions between the system and its environment and the relationships between these

3

interactions. Typical examples of systems are applications and software components, with

operations invoked on/by components being examples of interactions. Applications are

composed from one or more software components, where each component is either an atomic

component or a compound component. Consequently, the service provided by an application

is composed from the services provided by its constituent components. The term Friends

service is used to denote the service provided by an application that is deployed by a service

provider on the Friends deployment platform.

3.1 Limitations of component-based design

One of the promises of component-based design is the quick introduction of new applications

through re-use of software components. Ideally, an application can be developed by selecting

available components and composing them such that the requested service is provided. Still

many problems need to be solved, however, to realize this ideal picture, most of them

originating from a need for methodological support. We mention some of these problems.

Finding components. Components are stored in libraries or repositories. In case repositories

are not organised according to proper classification criteria it is difficult to find the software

one is looking for. Furthermore, standard rules for documenting components in repositories

are needed in order to support intelligent search methods.

Understanding components. Components are commonly described in terms of interface

definitions, one for each component interface, using an Interface Definition Language (IDL).

These interface definitions generally describe only the signatures (names and types) of the

component’s properties, operations and operation arguments. A list of operation’s signatures,

however, does not completely define how the component behaves. As a consequence,

different implementations of the same interface definition may show different behaviours.

Architectural design. Designing a proper composition of components that provides the

requested service is a non-trivial task, especially for more complex services. Starting from a

specification of the requested service, multiple designs of the requested service at

successively, related abstraction levels may precede the final design in order to manage the

design complexity. Incorporation of available components in the early design steps shortens

the entire design process. Therefore, methodological support is needed that combines a top-

down design approach, including specification techniques and decomposition guidelines

(e.g., design patterns), with bottom-up knowledge about available software components.

Correctness. Since IDL specifications incompletely define a component’s behaviour, it is

difficult, actually impossible, to assess the correctness of this component. At best, test runs

obtained by executing a component implementation can be used to determine whether the

actual (executed) behaviour corresponds to the “expected” behaviour. Many errors found in

component implementations can however already be detected during the specification and

design phases. Since adaptations in the implementation phase can be very expensive, service

specifications and designs should be analysed and validated before.

3.2 Model-based service creation

To tackle the problems as described in the previous section, we propose a model-based

approach to service creation [QuSF99]. Modelling is an essential activity when dealing with

the inherent complexity of systems. We observe that services become progressively larger

and more complex. Models help us to understand services by representing only their

essentials, i.e., by eliminating everything we consider irrelevant to what we want to consider.

A model-based approach supports architectural design, through structuring the service

creation process into multiple design steps. Starting from an abstract specification of the

requested service, each step delivers a more refined design modelling those service

characteristics that are considered relevant at the respective abstraction (or refinement)

levels. In this way, separation of concerns is achieved to manage the design complexity. Use

4

of bottom-up knowledge should guide the design (or refinement) steps to optimise re-use of

software components and to obtain the final design in a fast and effective way.

Modelling services (applications) at successively, related abstraction levels, enables

validation of the correctness of designs. Each successive design step should produce a design

that conforms to the designs defined in previous steps. Techniques can be developed to verify

this conformance relation (semi-)automatically. The modelling of services also makes the

testing of implementations more meaningful, by providing some reference against which the

validity of test runs can be checked.

Modelling helps designers to understand services and components by representing only their

essentials, i.e., the characteristics considered relevant at a certain abstraction level. For

example, a service specification should define completely and unambiguously the external

behaviour of an application or component. In this way, for example, a service designer can

determine the composite behaviour of a certain composition of components and thus decide

whether this composition provides the requested behaviour.

Modelling the external behaviour of components can be extended with information about the

environment (or context) in which the component can be used and the problems it solves.

This resembles the idea of a design pattern [GHJV95]: a specification in terms of a problem,

a context, and the (partial) solution as provided by the component. Modelling components

this way not only supports a proper understanding of components, but also supports the

process of finding components in a problem-oriented way. For example, it facilitates a

problem-oriented categorisation of components and the identification of keywords to be used

by component search engines.

3.3 Behaviour specification

To support component-based design, it is generally recognised that the external (operational)

behaviour of a component should be defined and, furthermore, be added to the component

[Szyp98]. A modelling language is needed that allows one to express the relevant behaviours

characteristics of components, with a formal semantics to support analysis and validation.

Furthermore, tool support should be available to facilitate the use of such a modelling

language. We investigated the following alternatives.

Java. In the Friends project, Java is used as implementation language. Java visual assemblers

[Diak99], like Inprise JBuilder, Symantec Visual Cafe, IBM Visual Age, or NetBeans, have

simple component assembly features. In addition, extensions to the Java language may be

defined to specify the behaviour of components. A straightforward way seems to add pre- and

post-conditions to the operation signatures. Some examples already exist, like Biscotti, an

extension of Java in which method specifications are extended with (Eiffel-style)

preconditions, postconditions and invariants [CiRo99]. The specification of preconditions,

postconditions and invariants can be used for run-time checks performed by either the caller

(client) or the called (server) component [BJPW99]. However, the combination of Java visual

assemblers with Java language extensions does do not support the abstract modelling of the

behaviours of individual or compositions of software components. Therefore, they are not

suited for model-based service creation, but are solely used at implementation level.

UML. UML-based tools support notations for describing different aspects of the structure

and behaviour of software, and often suggest methodologies for applying these notations

throughout the software development process [UML]. However, UML is not very suited for

modelling and relating the behaviour of components at successive (higher) abstraction levels.

Furthermore, UML lacks a formal semantics that supports analysis and validation of

behaviour specifications.

Formal Description Techniques (FDTs). To support the modelling and design-time analysis

of components at higher abstraction levels, other specification techniques need to be

considered. In the last decades, many (formal) specification languages have been developed

supporting varying conceptual models. FDTs that support an asynchronous interaction model,

5

like Estelle or SDL, are particularly suited for representing designs at the lower abstraction

levels [QFS+97]. To support different and related abstraction levels or constraint-oriented

specification styles, a synchronous interaction model is more suited, like in LOTOS

[BoLV95] or AMBER [EJO+99].

The use of formal specification languages in distributed systems design is however not

widely accepted. The primary reason for this seems to be the required effort to specify

designs, which is considerable compared to the effort needed to actually implement the

design. We believe the use of a specification (modelling) technique does pay off in terms of

improved efficiency of the service creation process and quality of the resulting designs, if

providing an integrated tool environment supporting the specification, systematic design,

analysis, verification and testing of services.

Amber and Testbed Studio. In the Friends project we have chosen AMBER [EJO+99] as

the modelling language, which is supported by an integrated tool environment, called Testbed

Studio [FrJa98]. Strong points of AMBER are its expressiveness (allowing those behaviour

characteristics to be modelled we consider relevant for service creation), its underlying

formalisms (enabling different types of analysis), and its graphical representation. Testbed

Studio supports the editing of AMBER specifications, including syntax and semantics

checking, and adds a number of analysis tools, such as step-wise simulation, quantitative

analysis, integrated use of the model checker SPIN [Holz97], and several kinds of generated

views on a model. An additional important factor favouring the choice of AMBER is that the

Telematics Institute developed Testbed Studio in the Testbed project [FrJa98]. Therefore, as

opposed to other tools, we are able to influence the further development of Testbed Studio.

4. Architecture of the Friends service creation environment

Figure 2 depicts the tool architecture of the Friends service creation environment, identifying

the tools supported by this environment and their relationships. The upper part of the figure

shows the tools related to the specification and design of services using the modelling

language AMBER. The lower part of the figure shows the tools related to the implementation

of components in Java and their assembly into deployable services.

This section further explains the tools identified in Figure 2, including their development

status. The tools are divided into the following categories: design tools, implementation tools,

analysis tools and deployment tools.

4.1 Design tools

Design tools assist the service developer in modelling and designing services (applications) at

different abstraction levels. The following design tools are distinguished: modelling tool,

modelling library and method support.

4.1.1 Modelling tool

Testbed Studio is used to edit AMBER models. To support the service developer in the

modelling process, a mapping is defined between concepts from the DSC component

architecture and AMBER concepts. This mapping describes how a DSC concept, such as,

e.g., an interface, operation or event, can be modelled in AMBER [QuTe00].

An Amber model consists of three sub-models: (i) an actor model, which defines the actors,

involved, e.g., software components or functional application parts for which the assignment

to components is yet undefined, and how they are interconnected, (ii) a behaviour model,

which defines the behaviour (functionality) of each actor, and (iii) an item model, which

defines the objects or data being manipulated by the actors through their behaviour.

6

Design

(AMBER)

Implementation

(JAVA, IDL)

Final service

design

IDL, CS files

Executable
components

Model

Design guidelines

Assembly
descriptor

Feedback

Request for
service

Modelling

library

Service specifications
and designs

Analysis

Design time

- simulation
- model checking
- verification, etc.

Run-time
- monitoring
- conformance testing
- etc.

Method

support

IDL + CS

generation

Component

implementation

Code template

generation

Stubs, skeletons

Component

repository

Assembly

Executable
components

Configuration

(SCGen)

Executable
components

Modelling

Packaging

Deployable
FRIENDS

service

Executable
components

Figure 2. Architecture of the Friends service creation environment.

Actor model. Figure 3 depicts an actor model representing a design of the Friends Shared

White Board service. In AMBER, components are modelled by actors (represented as

octagons) and interfaces are modelled by interaction points (represented as ovals) [QuTe00].

Figure 3. SWB actor model

The design of a Friends service should conform to the TINA service layer architecture. A

service is decomposed into a service session User Application (ssUAP) function, which

presents the service to the end-user, a Service Session Manager (SSM) function, which

maintains the global view of a service session in terms of the parties, stream bindings and

resources involved, and a User Session Manager (USM) function, which serves as a security

guard between the ssUAP and SSM function to guarantee controlled access to the SSM. Each

of these functions is assigned to a separate software component. The entire service is

implemented by one instance of the SSM component, and multiple instances of the ssUAP

and USM components, one per end-user. Each ssUAP, USM and SSM component is further

decomposed into a generic sub-component, providing generic management functionality,

such as starting and deleting service sessions and adding participants and streambindings to a

service session, and a service specific sub-component. Consequently, a Friends service is

built by extending the generic ssUAP, SSM and USM sub-components with service specific

functionality, assigned to the SWB-ssUAP, SWB-SSM and SWB-USM [VWBB99].

i_SwbServer

i_SwbClient

i_SwbServer

7

Behaviour model. Figure 4 depicts the behaviour models of the SWB-ssUAP, SWB-SSM

and SWB-USM, which only consider the i_SwbClient and i_SwbServer interface and abstract

from generic service functionality.

i_SwbServer (SSM)

serv ice related (global)
master copy of shared whiteboardmaster copy of shared whiteboard

getBoard

getBoard
inv ocation
getBoard
inv ocation

getBoard
return

getBoard
return

setBoard

setBoard
inv ocation
setBoard
inv ocation

setBoard
return

setBoard
return

eventHandling

participant listparticipant list

notif y Ev ent
(SwbEv ent) [*]
notif y Ev ent

(SwbEv ent) [*]
subscribe
(SwbEv ent)
subscribe
(SwbEv ent)

user related (local) [*]

local copy whiteboardlocal copy whiteboard

i_SwbServer (USM)

getBoard

getBoard
return

getBoard
return

getBoard
inv ocation
getBoard
inv ocation

eventHandling

SSM
notif y Ev ent

(SwbEv ent)

SSM
notif y Ev ent

(SwbEv ent)

subscribe

(SwbEv ent)

subscribe

(SwbEv ent)

SSM
subscribe

(SwbEv ent)

SSM
subscribe

(SwbEv ent)

notif y Ev ent

(SwbEv ent)

notif y Ev ent

(SwbEv ent)
setBoard

setBoard
inv ocation
setBoard
inv ocation

setBoard
return

setBoard
return

SSM

setBoard
return

SSM

setBoard
return

SSM

getBoard
inv ocation

SSM

getBoard
inv ocation

SSM

getBoard
return

SSM

getBoard
return

SSM

setBoard
inv ocation

SSM

setBoard
inv ocation

drawBoard (ssUAP)

USM
setBoard

inv ocation

USM
setBoard

inv ocation

USM
setBoard

return

USM
setBoard

return

drawdraw

i_SwbClient (ssUAP)

startServ ice

startServ ice

inv ocation

startServ ice

inv ocation

updateBoard

USM
getBoard

return

USM
getBoard

return

USM
getBoard

inv ocation

USM
getBoard

inv ocation

eventHandling

USM
notif y Ev ent

(SwbEv ent)

USM
notif y Ev ent

(SwbEv ent)

USM
subscribe

(SwbEv ent)

USM
subscribe

(SwbEv ent)

serv ice usage [*]

join serv icejoin serv icedrawdraw

Figure 4. SWB behaviour model

Interface i_SwbClient provides a single operation startService(). This operation is called upon

initialisation of the ssUAP. After startService is called:

� the ssUAP updates the whiteboard via operation (USM) getBoard, which is modelled by a

sequence of two interactions (USM) getBoard invocation and (USM) getBoard return,

which represent the operation invocation and the returning of its result, respectively;

� the ssUAP registers itself via operation (USM) subscribe to listen to so-called

SwbEvents, which indicate an update of the shared whiteboard due to a drawing activity

by another user. Subsequently, in an end-less loop, the interface listens to shared

whiteboard update events (fired by the USM). On receiving a SwbEvent via operation

(USM) notifyEvent, the ssUAP updates the whiteboard via operation USM getBoard;

� some drawing functionality is enabled. This functionality is part of the SWB-ssUAP

behaviour, but is not part of the i_SwbClient interface. The drawing functionality is

modelled as the repeated execution of a draw operation. Each draw operation is followed

by updating the shared whiteboard through operation (USM) setBoard.

Interface i_SwbServer provided by the USM merely forwards getBoard and setBoard

invocations of the ssUAP to the SSM, as well as forwards the return messages in opposite

direction. Similarly, the USM forwards events between ssUAP and SSM.

8

Interface i_SwbServer provided by the SSM returns the shared whiteboard status upon a

getBoard invocation or updates the status upon a setBoard invocation. The shared whiteboard

status is represented by the item master copy of shared whiteboard. In case the status is

updated an event is fired to notify all USMs involved (the replication of operation notifyEvent

models that several listeners are notified). The firing and accepting events is modelled as an

announcement. Iteration (loops) are used to model that operations can be invoked repeatedly.

Component composition. The behaviour model of each component in Figure 4 not only

models the operations that can be invoked on its interface, which is denoted as the invoked

interface (facet), but also the invocation of operations on the interface of another component,

which is denoted as the invoking interface (receptacle). Components are graphically

composed in Amber by connecting the interaction points modelling the corresponding

invoking (colored grey) and invoked (coloured white) interfaces. The correctness of such a

composition, i.e., whether operations of the invoking and invoked interface match, are

defined in terms of (static) semantics checks on interactions and interaction points in Amber.

4.1.2 Method support

Having only a modelling tool (editor), i.e., a language and tool support for it, is not enough to

create services. One also needs methodological support that tells us how to use the concepts

of the language to build services. Methodological support is captured into guidelines and

heuristics, service architectures (high-level software and its application to problems), and

design methods.

The Friends service creation process consists of the following phases. Starting point is the

user’s request for service.

1. Specification In this phase, a specification of the FRIENDS service is made. The main

activity is scoping: deciding on what is "inside" or "outside" the service. The service

specification defines the external observable application behaviour and should not define

internal behaviour aspects. A well-specified service is one that is both desirable (client

satisfaction) and feasible (builder feasibility). This phase also involves the determination

of service objectives, service requirements, and use-cases.

2. Design This phase considers the Friends service (application) from the internal

perspective, by decomposing the service into multiple related functional parts. This

decomposition step may be applied recursively to the identified parts, resulting into

designs at successive abstraction levels. It is an episodic process of grouping versus

separation of related solutions and problems, until a design is obtained that allows a

direct mapping of the identified functional past onto existing or implementable software

components. This design is called the final design. A well-designed service conforms to

proven architectures or patterns, and maximises the re-use of existing software

components. This phase includes issues like the use of patterns, searching for re-usable

components, and design-time validation (see section 4.2.1).

3. Implementation The components needed for service implementation either exist or need

to be developed. In the former case they are retrieved from the component repository and

configured. In the latter case, interface definitions (IDL) and component structure (CS)

are derived from the final design, and the components are implemented. A well-

implemented service meets its specification - no more and no less. The implementation

tools of section 4.3 support the implementation process.

4. Testing During the test phase, the implementation is certified to meet its specification.

This certification may range from on the one hand common test practices relying on

judgement and experience, to on the other hand a formal proof that the system as

implemented possesses the desired properties. Friends currently develops a validation

tool that checks whether test runs conform to the service specification (see section 4.2.2).

5. Deployment In this final phase, the deployment tools described in section 4.4 are used to

deliver a deployable Friends service.

9

The phases, though presented in a linear way, will be performed in iteration. Notice,

however, the explicit distinction between design and implementation activities. This is

reflected in the tool architecture of the Friends service creation environment, as shown in

Figure 2 (the right part of Figure 1 in detail).

4.1.3 Modelling library

Experience obtained with designing services leads to the recognition of re-usable components

as well as patterns (sometimes called architectures). These components and patterns are

stored in a modelling library. Testbed Studio supports the sharing of library elements

(components) between several models.

Figure 5 shows an example: the ssUAP-

USM-SSM pattern that has to be taken into

account by each Friends service. To create

different Friends services, the three basic

components are extended with service

specific components. Due to the used

architecture the SSM is the logical

component to implement the basic service

management functions. The ssUAP components are extended with the graphical user

interface elements, like e.g. the display of a video conferencing component or the interface of

a shared whiteboard.

4.2 Analysis tools

Analysis tools assist the service developer in analysing the properties of services as

represented in service models at design time, and the properties of services as exhibited by

service implementations at run-time.

4.2.1 Design time analysis

Testbed Studio includes tools supporting step-wise simulation and functional analysis of

behaviour models.

Simulation. The complete specification of the behaviours of components allows one to

simulate the service provided by individual components as well as the service provided by a

composition of components. For example, simulation of the shared whiteboard behaviour

model has shown that updates

of the whiteboard may be lost in

case of two simultaneous

setBoard invocations by

different ssUAPs. The reason is

that an ssUAP may invoke a

setBoard operation before the

event notification of a previous

setBoard from another ssUAP has been properly processed. The later setBoard simply

overwrites the previous ones. Such design errors are typically detected during simulation.

Figure 6 depicts the simulator control window.

Functional analysis. Testbed Studio enables a service designer to perform the following

functional analyses on a behaviour model:

� tracing: checks whether a certain sequence of operations is always/ever/never executed;

� liveness: checks whether one, all or at least one operation invocation from a certain set of

operations causes the invocation of at least one or all operations from another set;

� combined occurrence: checks whether the invocation of the operations from a certain set

either exclude each other, or always/sometimes/never happen all together;

User

domain

ssUAP USM SSM

Provider

domain

Figure 5. Friends service session pattern

Figure 6. Simulator control window

10

� safety: checks whether the invocation of each, all or at least one operation from a certain

set requires the invocation of at least one or all operations from another set.

Verification. Based on the conceptual model underlying Amber, a general technique has

been developed to enforce the correct replacement of an abstract behaviour by a more

concrete behaviour, called behaviour refinement. A conformance relation defines which

concrete behaviours are valid refinements (implementations) of the abstract behaviour, while

it guarantees that the behaviour characteristics prescribed in the abstract behaviour are

preserved by the concrete behaviour. For a further reading on this technique, we refer to

[QuSF99]. Since this technique can in principle be automated, tools are planned that support

conformance assessment after each design step.

4.2.2 Run-time analysis

Besides the common debug facilities provided by (Java) implementation environments, the

Friends service creation environment adds two powerful techniques to test the actual

implementation of a Friends service at run-time.

Monitoring. A monitoring framework is developed

that enables the monitoring of interactions between

distributed components [DBZS00]. Components

interact by invoking operations on each other via a

CORBA-compliant middleware platform. Operations

can be synchronous (called interrogations), in which

case a result is returned, or asynchronous (called

notifications), in case no result is returned. An

operation invocation (and the return of its result)

involves the transmission of a so-called request object

between the invoking and invoked component. The request object contains the operation

name, operation arguments, results and other (e.g., context) information. Figure 7 depicts the

monitoring points of a synchronous operation.

When the operation is

being executed, each

monitoring point produces

a so-called interaction

event that is recorded. In

this way, the monitoring

framework is able to

monitor the (real-)time

ordering of interaction

events. The interaction

events are graphically

represented using Message

Sequence Charts (MSCs).

Figure 8 depicts an MSC

representing an execution

of the SWB service.

The monitoring framework

is also able to reconstruct

the causal relationship between operations. For this purpose, monitoring information is sent

between components using the context field of the CORBA request object, and is propagated

through components by tagging threads of execution that process the operation.

A prototype of the monitoring framework exists. The monitoring framework is integrated into

the component framework, such that the application (service) developer is not burdened with

monitoring issues. Currently, the monitoring framework is developed further to support

different types of events, e.g., life-cylce events, QoS events and user-defined events, which

invoking
component

invoked
component

invocation

return

= monitoring point

Figure 7. Monitoring points

Figure 8. Message sequence chart

11

can be used for different purposes, such as accounting, load-balancing, QoS control and

testing.

Conformance testing. Based on the MSCs obtained using the monitoring framework, a

technique for conformance testing is developed. This technique allows a service developer to

check whether individual runs (executions) of a service implementation conforms to an

Amber model of the service, which either represents the external specification of the service

or one of its designs. The following steps are distinguished (see Figure 9):

1. monitoring: a single run of the service implementation is monitored using the monitoring

framework described above. The obtained MSC represents a partial order of interaction

events, which is called a real trace;

2. mapping: the real trace is transformed

into an abstract trace that can be

compared to the Amber model. This

transformation involves, amongst others,

the abstraction (removal) of operations

that where not considered yet at

modelling level. Furthermore, differences

between naming conventions used at

modelling and implementation level may

have to be resolved, in case the

generation tools as explained in section 4.3.1 and 4.3.2 were not used;

3. comparison: the abstract trace is compared with the Amber model, using the simulator of

Testbed Studio. Successive operation invocations defined by the abstract trace should

also be allowed by a step-wise simulation of the Amber model.

A tool supporting these steps has been developed. The kind of automated support provided in

the mapping step strongly depends on the assumptions that can be made on the type of

refinements made during the design process. This will be elaborated in a forthcoming paper

dedicated to this conformancing testing technique.

4.3 Implementation tools

Implementation tools assist the service developer in implementing (compositions of)

components that provide the requested services.

4.3.1 IDL and CS generation

The ‘final service design’ specifies a Friends

service in terms of an assembly of components.

Some components may already be available,

others may be missing. The latter components

need to be implemented. The first step in the

implementation process is a (black-box)

specification of the functionality of the

component. Such a specification is already part

of the final service design.

Referring to the so-called Service Session

Manager component of Figure 3 and 4 (SWB-SSM), the interface i_SwbServer provides two

operations, called setBoard and getBoard. Each operation is specified as a behaviour block

containing an invocation and a return interaction. Additionally, an exception interaction may

be specified (not shown in the figure). For each interaction parameters can be specified, as

shown in Figure 10 for the interaction getBoard return. The parameters of an invocation

interaction and a return interaction model the input and output parameters of the

corresponding operation, respectively. Modelling interactions and their parameters in this

way, interface descriptions (CORBA IDL) and ‘component specifications’ (CS; description

3. comparison

Abstract traceAmber model

1. monitoring
Real trace

2. mapping:
- naming
- abstraction

conformance?

Implementation

Figure 9. Conformance testing steps

Figure 10. Interaction parameters

12

of sub-components and the relation between invoking and invoked interfaces) can be

generated. This functionality has been implemented, including the reverse engineering.

Figure 11 shows the resulting IDL for the SWB-SSM component.

// This file was generated by IDLGen
// Source file: D:\friends\src\friends\tools\IDLGen\SWB.xmb
// Date: 13-mrt-00 12:18:27

#ifndef SWB-SSM_IDL
#define SWB-SSM_IDL

// IDL file for component SWB-SSM
module friends {

module swb {
struct i_SwbServer {

string itfType;
};
struct Board {

integer version;
};

}; //swb
}; //friends

module SWB-SSM {
interface i_SwbServer {

void setBoard(in friends::swb::Board board);

// invoke: board := 'setBoard invocation'.board;
// 'master copy of shared whiteboard'.update(board);
friends::swb::Board getBoard();
// return: returnvalue := 'master copy of shared whiteboard';

}; //i_SwbServer
}; //SWB-SSM

#endif

Figure 11. Generated IDL specification of the SWB-SSM.

4.3.2 Code template generation

IDL and CS specifications can in turn be used to generate stubs or skeletons, as a next step in

component implementation. For this purpose, Friends (DSC) tools already exist as described

by Batteram et al. [BBVD99]. In this stage, CORBA Component Descriptors (CCD, as

defined by the CORBA Component Model [CCM99]) are generated as well.

4.3.3 Component implementation (atomic components)

Standard (Java) development environments are used to implement components. Notice that

interface descriptions (IDL) are part of the specification of the component, but are not

enough. To support a proper implementation, behavioural specifications are required as well.

The AMBER specifications (as a communication means) can be used for this purpose. In

current practice, message sequence diagrams are commonly used to support component

design. These message sequences are often made by hand. However, message sequences can

be derived from the service specification of a component. A tool has been implemented to

generate message sequence diagrams from AMBER specifications. The step-wise simulator

of Testbed Studio generates a trace from a model (already implemented), and converts this

trace to standardised message sequence formats to be visualised.

4.3.4 Configuration (SCGen)

Functionality related to, e.g., access control, authorisation, accounting and service invocation

are identical for each Friends service. Aiming at service creation, i.e., the fast and flexible

creation of new service running on this platform, one wishes to abstract from such generic

functionality and to focus on the service-specific functionality only. The integration of

generic functionality should be handled automatically, or at least not being the concern of the

service developer.

13

A tool has been built, called SCGen, that

automatically relates the Friends services to already

available generic functionality. The tool is

described by Verhoosel et al. [VWBB99]. As

shown in Figure 12, all kind of parameter options

can be specified in AMBER models (in so-called

profiles of an entity), whereupon the code generator

SCGen uses this information.

4.3.5 Component repository

The component repository contains the (binary)

components, which are stored as a zip-archive.

Complying with the CORBA Component Model

[CCM99], a Software Package Descriptor (SPD) is

part of this archive.

4.4 Deployment tools

4.4.1 Assembly

Components are composed into larger ones,

providing services to be deployed. In Friends, we

migrated to the OMG CORBA Component Model

(CCM) standard and the corresponding formats

[CCM99, chapter 10]. CMM prescribes that for a

compound component we not only need a CORBA

Component Descriptor (see section 4.3.2), but also a

Component Assembly Descriptor (CAD). This CAD

can be generated from the AMBER models, and has

been implemented.

4.4.2 Packaging

To be deployed, a component has to be packaged according to formats as required by the

deployment platform. Identical to ‘atomic’ components, compound components are stored as

a zip-archive as described in section 4.3.5. Tools for automated packaging still have to be

implemented. The CORBA Component Model allows the inclusion of (formal) behaviour

descriptions in the software package, which we obviously intend to do.

5. Conclusions

In this paper, we sketched our ideas about model-based service creation and illustrated them

in the context of the Friends project. Many of these ideas have already been implemented in

the Friends platform, such as a graphical language for high-level component assembly, code

generation from component specifications, and analysis tools. Through implementation of the

service creation environment, we aim at proving the applicability of our approach, and in

particular the added value of behaviour specifications.

Other ideas need further elaboration before they can be implemented. Some short term

research issues are the extension of AMBER with concepts tailored to service creation,

parameterisation of model-components to support model-based customisation, and searching

components based on functionality. Research issues on the long(er) term are mainly in the

area of analysis techniques, such as improved model checking support, verification

techniques to assess the conformance between service designs defined at successive

abstraction levels, and the modelling and analysis of performance aspects.

Figure 12. Configuration parameters

for generic service functionality

14

Concluding, we believe that our research contributes to the goal of developing a platform

supporting rapid and correct service creation. In particular, the application of high-level

specification languages and supporting (analysis) tools should enable the service developer to

build a service from software components that can be considered at high(er) abstraction

levels, and to assess the correctness of these components and their composition.

References

[BaBa98] Bakker, J.-L., and H.J. Batteram, Design and evaluation of the Distributed Software Component

framework for distributed communication architectures, In: Proc. Of the 2nd Int. Workshop on Enterprise

Distributed Object Computing (EDOC'98), November 1998, p. 282-288.

[BBVD99] Batteram, H.J., J.-L. Bakker, J.P.C. Verhoosel and N.K. Diakov, 'Design and implementation of

the MESH service platform', In: Proceedings of TINA’99 Telecommunications Information Networking

Architecture Conference, Oahu, Hawaii, USA, 12-15 April 1999.

[Bern96] Bernstein, P.A., "Middleware: A Model for Distributed Services." Communications of the ACM

39, 2, February 1996, pp. 86-97.

[BJPW99] Beugnard, A., J.-M. Jézéquel, N. Plouzeau and D. Watkins, 'Making components contract aware'.

IEEE Computer (July 1999), p. 38-45.

[BoLV95] Bolognesi, T., J. van der Lagemaat and C.A. Vissers (eds.), LOTOSphere: Software development with

LOTOS. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

[CiRo99] Cicalese, C.D.T. and S. Rotenstreich, 'Behavioral specification of distributed software component

interfaces'. IEEE Computer (July 1999), p. 46-53.

[CCM99] CORBA Components - Volume I, OMG TC Document orbos/99-07-01, August 2, 1999,

http://www.omg.org/docs/orbos/99-07-01.pdf.

[Diak99] Diakov, N., Survey on products for visual assembly tools for Java, Amidst document WP1/N007,

University of Twente, Enschede, The Netherlands, 3 June 1999,

http://amidst.ctit.utwente.nl/workpackages/wp1/documents/wp1n007v01.pdf

[DBZS00] Diakov, N.K., H.J. Batteram, H. Zandbelt and M.J. van Sinderen, ‘Monitoring of distributed

component interactions’. In Proceedings of 7th Int. Conf. on Interactive Distributed Multimedia Systems

and Telecommunication Services (IDMS 2000) in Enschede, The Netherlands, October 2000.

[EJO+99] Eertink, H., W.P.M. Janssen, P.H.W.M Oude Luttighuis, W.B. Teeuw, C.A. Vissers, 'A Business

Process Design language', Proceedings World Congress on Formal Methods (FM'99), 1999.

[FRIENDS] http://friends.gigaport.nl/; http://friends.telin.nl/

[FrJa98] H.M. Franken and W. Janssen, 'Get a grip on changing business processes Results from the

Testbed-project', Knowledge & Process Management (Wiley), vol. 5, no. 4, December 1998, p. 208-215.

[GHJV95] Gamma, E., R. Helm, R. Johnson and J. Vlissides, "Design patterns : elements of reusable object-

oriented software". Addison-Wesley, Reading, MA, 1995.

[Holz97] Holzmann, G.J., 'The model checker SPIN'. IEEE Trans. on Soft. Eng., vol. 23, no. 5, May 1997.

[QFS+97] Quartel, D.A.C., L. Ferreira Pires, M.J. van Sinderen, H.M. Franken and C.A. Vissers, "On the role

of basic design concepts in behaviour structuring", Computer Networks and ISDN Systems, vol. 29, no. 4,

March 1997, 413-436.

[QuSF99] Quartel, D.A.C., M.J. van Sinderen, and L. Ferreira Pires, "A model-based approach to service

creation", In: Proceedings of the Seventh IEEE Computer Society Workshop on Future Trends of

Distributed Computing Systems, IEEE Computer Society, 1999, 102-110.

[QuTe00] Quartel, D.A.C., and W.B. Teeuw (Ed.), Modelling FRIENDS components in the language

AMBER, Report FRIENDS/WP3/N012/V01, Telematics Institute, Enschede, The Netherlands, 21 Februari

2000, https://extranet.telin.nl/docuserver/dscgi/ds.py/View/Collection-745.

[ReMa97] Rechtin, E. and M.W. Maier, The art of systems architecting. CRC Press, Boca Raton, FL, 1997.

[Szyp98] C. Szyperski, Component Software, Beyond Object-Oriented Programming, Addison-Wesley,

ACM Press, New York, 1998.

[TINA97] Kristiansen, L. (ed.), Service Architecture: Version 5.0. TINA-Consortium, June 1997.

http://www.tinac.com/specifications/specifications.htm

[UML] http://www.rational.com/uml/resources/documentation/

[VWBB99] Verhoosel, J.P.C., M. Wibbels, H.J. Batteram and J.-L. Bakker, 'Rapid service development on a

TINA-based service deployment platform'. In: Proceedings of TINA’99 Telecommunications Information

Networking Architecture Conference, Oahu, Hawaii, USA, 12-15 April 1999.

