
A Business Process Design Language

Henk Eertink, Wil Janssen, Paul Oude Luttighuis,
Wouter Teeuw, Chris Vissers

Telematics Institute, P.O. Box 589, 7500 AN Enschede, The Netherlands
{eertink,janssen,luttighu,teeuw,vissers}@telin.nl

Abstract. Business process modelling and analysis puts specific requirements
on models used and the language for expressing those models. The models
should be easily understandable and analysable. In this paper we study the re-
quirements for such a language and introduce a language that satisfies those re-
quirements to a large extent. It was developed in the Testbed project, which
aims at developing a systematic approach to business process change.
The language, calledAMBER, has a graphical representation, and allows to
model processes, data, and the organisation and people involved in a uniform
and integrated way. On the basis of a formal foundation of the language, differ-
ent analyses and tool support are available. We illustrate our approach with a re-
alistic example.

1 Introduction

Organisations are complex artefacts. They involve different customer groups, business
units, people, resources and systems. They stretch over numerous different processes
that interact in a seemingly chaotic way. When trying to change business processes
within organisations one is confronted with that complexity. In order to cope with that
complexity and improve the grip on changing business processes, a systematic and
controlled approach is needed.

The Testbed project develops a systematic approach to handle change of business
processes, particularly aimed at processes in the financial service sector (Franken,
Janssen, 1998). A main objective is to giveinsight into the structure of business
processes and the relations between them. This insight can be obtained by making
business process modelsthat clearly and precisely represent theessenceof the
business organisation. These models should encompass different levels of
organisational detail, thus allowing to find bottlenecks and to assess the consequences
of proposed changes for the customers and the organisation itself; see also Jacobson et
al. (1995) and Ould (1995). Formal methods allow for detailed analysis of models and
tool support in this process.



Figure 1. A model-based approach to business process change

As shown in Figure 1, business processes models can be used for analysis and
manipulation of business processes without having to actually build these processes
first. This model-based approach allows to identify the effects of changes before
implementing them. The models constitute an important means for the preparation and
actual implementation of organisation and IT change.

In order for such models to be of real help, they have to combine different,
competing requirements. On the one hand, they have to be easily accessible and highly
understandable to serve as a means of communication between people involved. The
primary users of the models are business analysts. They are not especially trained in
modelling or formal languages. Moreover, they have to discuss the results with
management and people in the shop floor. Thus, the representation should be a
graphical one: textual representations are not acceptable for the intended users.
Moreover, the language should be based on concepts that are relevant to the domain of
discourse. It should have a cleararchitectural meaning for business modelling
(Vissers, 1994).

On the other hand, the models should be analysable using computer tools and serve
as a starting point for (information) systems design. This implies that the models
should have a rigorously defined meaning and syntax. Mathematical rigour and
communicability are qualities that are not often found in close companionship.

In this paper we introduce a language designed for business process engineering,
called AMBER (Architectural Modelling Box for Enterprise Redesign). We show the
ingredients of the language and how it fulfils the larger part of the requirements
needed for business process modelling and analysis. The emphasis in this paper is on
the language, and not on the tools and the methodology that support it.

This paper is structured as follows. In section 2 we define requirements for a busi-
ness process modelling language. Thereafter we mention a number of current ap-
proaches and match them to these requirements. Section 3 then gives an overview of
AMBER and the means of specialising the language for specific purposes. Section 4
illustrates the approach using a larger example. We end with a summary of our find-
ings and an overview of the current state and plans for (tool) support.

current
business
process

improved
business
process

business
process
model

new model

business practice

modelling world

an
al

ys
is

an
d

m
od

el
lin

g

re
al

is
at

io
n

analysis of bottlenecks
suggestions for improvement

preparation of change

change and migration



2 Requirements and current state

2.1 Requirements for a business process engineering language

When entering the field of business process analysis and redesign, one is confronted
with an overwhelming number of modelling tools and languages. Often, these lan-
guages and tools have little in common. Some emphasise elements of workflow in the
models, others concentrate on quantitative analysis, yet others try to integrate business
processes and supporting information technology. If there are so many different view-
points on business process modelling, then how should one make a choice?

As the Testbed project is concerned with supporting business process analysts
throughout a BPR project, we have judged modelling languages and BPR tools for
their suitability in different stages. From this perspective an evaluation framework was
developed (Janssen et al., 1997). It has four dimensions of evaluation criteria (see
Figure 2).

Figure 2. The dimensions of the evaluation framework

The most prominent dimension for modelling languages isfunctionality.It covers:
• Expressiveness: we want to express activities and their relations, repetition, and

co-operation;
• Structuring: the language must support abstraction levels and decomposition;
• Analysis: formal semantics are required, extensibility with respect to required

analysis parameters;
• Relevance: all concepts should be relevant to the domain being modelled.

A second dimension isease of use. This dimension is partly conflicting with the previ-
ous one: high functionality often leads to difficulties in using the language due to the
number and complexity of the language concepts. As we are aiming at business ana-
lysts or business consultants to build and use models, the language should be highly
intuitive and communicable.

The third dimension is theBPR-trajectory. Modelling business processes is only a
small part of BPR. In a BPR-trajectory different steps are distinguished, from devel-
oping a corporate strategy to the introduction and implementation of new, redesigned
processes. Whether or not languages and tools are helpful in different steps in the BPR

Modelling
framework

1: Functionality

3: BPR trajectory

2: Ease of use

4: General



trajectory is vital for their applicability. This dimension is often overlooked when
evaluating tools and languages. This includes modelling fordesign, redesign and mi-
gration: language support for component-based design, sharing model parts, sequences
(trajectory) of models.

The last dimension considersgeneral propertiesof (especially) tools supporting the
language, e.g. cost, user support and market acceptance. In general, tool support is a
prerequisite for broad acceptance. Though processes can be visualised using drawing
tools such as ABC Flowcharter, more extensive support is needed to tackle complexity
and ensure maintainability.

2.2 Current approaches to business process modelling

The problem of understanding complex system behaviour and the challenge of devel-
oping easy-to-use models are apparent in the field of business processes. Until re-
cently, many organisations used only spreadsheet models to forecast the implications
of change. Nowadays, more sophisticated modelling and analysis techniques —often
based on simulation or workflow techniques— are used in predicting the effects of
change.

A simulation model represents a (discrete event) system, setting (input) parameters
and observing output parameters and the way they behave in time. For this purpose,
many tools have been built, for example based on simulation languages like Simula
’67 (Dahl et al., 1970) or SIMAN (Pegden et al., 1995). Arena (Systems Modelling
Corporation) and SimProcess (CACI Products Company) are examples of such tools.
The resulting simulation models are often used for problem solving in organisations
(Dur, 1992).

For some purposes, simulation is less suited, because it is too time-consuming or
does not deliver the level of completeness required. In such cases, analytical tech-
niques for quantitative analysis (Lazowska et al., 1984) can be used. Especially for
computer systems performance modelling such techniques are well suited.

Workflow approaches (Lawrence, 1997) tend to use activity models like Petri-nets
or role activity diagrams or non-standard modelling techniques to define the business
processes and their relations. Workflow is often used to automate or streamline busi-
ness processes.

When considering people and their positions in an organisation, it is not sufficient
to focus only on the procedural aspects of process definition. Aspects of responsibility
and accountability must also be taken into account. The theoretical framework of
Flores and Winograd (1986), commonly referred to asspeech-act theory, provides
concepts for modelling these issues (Scherr, 1993). Examples of methods and tools
built on this theory are ActionWorkflow (Medina-Mora et al., 1992), DEMO (Rijst,
Dietz, 1994), and SAMPO (Auramaki et al., 1988).

The Unified Modelling Language UML (Rational, 1997) provides a set of concepts
and language elements for different aspects: use-case diagrams show the actors, class
and object diagrams define objects and their behaviour, state or scenario diagrams
show life-cycles and scenarios, etc. Although the approach was originally developed



for software process design, the application of object-oriented design principles as
provided by UML for the (re)design of business processes is extensively described by
Jacobson (Jacobson et al, 1995).

A limited number of more systematic approaches tobusiness process designare
found in the literature. One of the most extensive ones is STRIM (Systematic Tech-
nique for Role and Interaction Modelling) (Ould, 1995). This method uses Role Ac-
tivity Diagrams (RADs) to graphically model processes. The method comprises a
global approach to model a process, and more detailed guidelines for specific situa-
tions. It defines process patterns (a kind of templates) for frequently occurring process
types. The Architecture of Integrated Information Systems approach, supported by the
tool Aris, can be regarded as a systematic approach (Scheer, 1998) as well. Aris al-
lows for different visualisations of processes for different purposes. Moreover, it pro-
vides a powerful repository that can serve a kind of collective organisational memory.
The conceptual basis of the approach has certain similarities to the language we use in
Testbed. Due to lack of formal foundation, however, analysis is limited. Simulation is
possible, but other types of analysis are missing.

If we place the above approaches along the dimension of the evaluation framework,
we can see that all of them provide ingredients applicable to business process model-
ling and analysis. They provide expressiveness (simulation languages, Petri-nets),
analysability (simulation, analytical techniques), insight (STRIM, speech-act theory),
relative ease of use (workflow modelling tools). However, none of them combine
those aspects in a uniform way. Moreover, the fact that business process change in-
volves a series of models (plateaux, migration stages) is missing from almost all ap-
proaches mentioned (Janssen et al., 1997).

We may conclude that the existing modelling languages each emphasise some ele-
ments, but do not provide an overall solution for business process engineering. This is
partially caused by the fact that most of these methods originate from information
system development. In the next section we defineAMBER and illustrate how this
language aims at fulfilling the requirements stated, in a unified, graphical yet formally
defined language.

3 AMBER explained

Business modelling languages may be deployed for many different purposes. Not only
do they supply a sound foundation for communicating and discussing business process
designs, they may be used as well for e.g.

• analysisof business processes, that is, assessment of qualities and properties of
business process designs, either in quantitative or qualitative terms;

• model checking, that is, providing answers to functional queries posed on busi-
ness models, e.g. “Will every customer request result in an answer?”;

• export to implementation platforms, such as workflow management and enter-
prise resource planning systems;

• job design, that is, designing detailed job specifications and generating job in-
structions; and



• domain-specific modelling, that is, incorporating concepts specifically for a
certain application domain, such as a business sector.

Every specific purpose of a business modelling language brings about its own specific
demands on the language. Yet, it should be possible to use the language for only a
limited purpose, without being burdened with the peculiarities of other purposes.
Therefore,AMBER was designed to have a lean core language, containing the basic
concepts underlying any of the purposes served. On top, it can be tailored for specific
purposes by means of a specialisation mechanism called ‘profiles’. The top of the pie
holds the modelling and analysis extensions, the bottom contains the extensions that
can be used to map models to real-world implementations. This design makesAMBER

flexible, extendible, and comprehensible (Figure 3).

AMBER
core

model
analysis

model
checking

WfM
export

ERP
export

domain-
specific
model-

ing

...

job
design

...

Figure 3. AMBER’s pie-wise design

3.1 The core language

The core of the business modelling language contains concepts that enable basic rea-
soning about business processes. AMBER recognises three aspect domains:

• the actor domain, which allows for describing the organisations, departments,
systems, and people carrying out business processes;

• thebehaviourdomain, which allows for describing what happens in a business
process;

• the item domain, which allows for describing the items handled in business
processes.

The actor domain
The basic concept in the actor domain is theactor. It designates a resource (used for)
carrying out a business process. Actors are structured: they may contain other actors.
Also, they are related. Therefore, actors are equipped withinteraction points, indicat-



ing physical or logical locations at which the actor may interact with its environment.
They are the hooks where interaction-point relations couple actors. Interaction points
may be involved in multiple relations. Also, an interaction-point relation may involve
more than two interaction points.

Car
Insurance
Company

Car
Insurance
CompanyClaim

Acknowledgement
Claim
Assessment

Claim
Registration

Claim
Settlement

InsurantInsurantInsurance
Advisor
Insurance
Advisor

GarageGarage

Figure 4. A typical actor model

Figure 4 depicts a typical actor model, showing the parties involved in car insur-
ance claims. It includes a triple interaction-point relation, between the insurant, his
garage, and his insurance adviser. It also shows the internal structure of the car insur-
ance company, that is, the four departments involved in processing the claim. The
legend of this domain is given in Figure 5. Note that colours have no formal meaning
in these models.



Figure 5. Ingredients of the actor domain

Actions, relations and behaviour structuring
The basic concept in the behaviour domain isaction. It models a unit of activity in
business processes. Actions carry two essential attributes: the actors involved in the
action and the result in terms of their outputs.

An action can only happen when itsenabling conditionis satisfied. These condi-
tions are formulated in terms of other actions having occurred yet, or not. The most
simple is the enabling relation. When put between actionsa andb, it models the fact
thatb cannot happen but aftera has finished. Its mirror image is the disabling relation,
modelling thatb cannot happen any more, oncea has occurred.

Causality relations can be composed using Boolean-like operators. Also, they can
be supplied with additionalconstraints, which further restrict the relation with condi-
tions on attribute values of preceding actions.

A special kind of action, used in many business process models, is atrigger. Trig-
gers are like actions, accept that they have no causality condition, that is, they are
immediately enabled.

assess damage reject claim

accept claim

assess claim

file claim

inform insurant

settle claim

damage occurs

alter claim

Figure 6. A typical unstructured behaviour model

Figure 6 depicts a typical behaviour model, containing a sequence of actions, related
by enabling conditions. The occurrence of damage triggers both the filing of a claim
as well as the assessment of the damage. Only when both have been carried out, the
claim is assessed and then either accepted or rejected. In any case, the insurant is in-
formed about the outcome. Only in case of acceptance, the claim is settled. After set-
tlement, the claim cannot be changed. We did not model what happens when claims
are altered. The legend is shown in Figure 7.

entity with sub-entities

interaction point ternary interaction-point relationbinary interaction-point relation



namename

action

enabling relation
(a enables b)

disabling relation
(a disables b)

and-join and-split

or-join or-split

trigger

a b a b

Figure 7. Actions and enabling conditions

Extensive modelling of all relevant actions in a business process, and their enabling
conditions, will result in huge and cluttered models for any serious business process.
Therefore, structuring concepts are included inAMBER to tackle the complexity of
behaviour models.

Behaviour can be grouped inblocks. Like actors, blocks can be nested. There are
basically two points at which some behaviour can be separated from its environment.
One isbetweenactions, the other isinsideactions.

fi rst phasefirst phasefi le claim

assess damage

main phasemain phase

assess claim

accept claim

reject claim

final phasefinal phase

settle claim

inform insurant

damage occurs

alter claim

main phasefirst phase

final phase

Figure 8. A phased behaviour model

When a block separates behaviour between actions, a causality relation is cut. A so-
called entry or exit, depending on the direction of the causality relation, indicates the
cutting point (at the block’s edge). This type of structuring is typically, but not exclu-
sively, used for structuring in phases. Figure 8 shows a phased version of Figure 6.



When a block separates behaviour inside actions, the action is divided in a number of
interactions. Interactions are related like interaction points in the actor domain. An
interaction can only happen simultaneously with all of its related interactions, which
must therefore all be enabled. This type of structuring is typically used for modelling
interaction between model elements. Figure 9 shows a version of Figure 6, in which
this type of structuring is used.

insurant behaviourinsurant behaviour

fi le claim

assess damage

settle claim

inform insurant

alter claim

damage occurs

insurance company behaviourinsurance company behaviour

fi le claim

assess damage

settle claim

inform insurant

accept claim

reject claim

garage behaviourgarage behaviour

assess damage

insurance company behaviour

insurant behaviour

garage behaviour

Figure 9. Interacting blocks

Although separately introduced here, phased and interaction-based structured may be
arbitrarily mixed.

block with subblocks

interaction

ternary interaction relation
binary interaction relation

a block with an entry and an exit

Figure 10. Behaviour structuring

Next to structuring, another way to tackle complexity in business models is to allow
similar elements to be described at once, as a group, instead of having to copy each of
them out individually. AMBER offers two facilities for this: replication and iteration.



receive claim collect assessmentsassess claim [3]

Figure 11. A replicated action

Replication can be used for actors, actions, interactions, and blocks, and indicates
that a number of replicas exist next to each other. Figure 11 shows a typical example,
in which a received claim is assessed by each of three assessment actions, e.g. as a
triple check for high-value claims. When all three assessments have finished, their
results are collected.

receive claim assess claim

accept claim so far accept claim definitely

reject claim

Figure 12. Iterative behaviour

Iteration is used for modelling repeated behaviour, that is, the repeated occurrence of
similar behaviour over time. Figure 12 shows an example. Here, different assessment
actions are carried out subsequently, for instance for checking different aspects of the
claim in different turns. Every assessment may result in (definite) rejection of the
claim, or in partial acceptance. When all aspects have been assessed, partial accep-
tance may result in definite acceptance. Notice that all actions involved in the loop
carry double edges and a double-headed arrow separates different loop traversals. The
legend of replication and iteration is shown in Figure 13.

Figure 13. Replication and iteration

namenamename [3]name [3]

name [3] namename [3] name

tripled (inter) action iterated (inter)action

enabling a new loop traversal

tripled block iterated block



The item domain
The item domain enables to model the items on which the behaviour is performed. In
the actor and behaviour models, items can be included and coupled to the various
elements of these models. In the actor domain, items are coupled to interaction point
relations, indicating that at the interaction point relation involved, the indicated item is
used. Figure 14 shows a straightforward example.

insurantinsurant insurance companyinsurance company

claim

Figure 14. An item coupled to an interaction point relation

Coupling items to elements of behaviour models is different in two ways. First, the
items are coupled to actions and interactions, instead of to interaction relations. This is
because interaction point relations are symmetric (that is, the interaction points in-
volved cannot have different roles), whereas interaction relations are not: each inter-
action involved may have its own distinctive contribution to the relation.

Second, item coupling in behaviour models distinguishes between five modes: cre-
ate, read, change, read/change, and delete. This mode indicates what type of action is
performed on the item involved. Figure 15 shows an example in which these respec-
tive modes occur, from left to right.

destroy claimfi l l out claim assess claim change claim improve claim

claim

* †

Figure 15. An item, coupled to actions in five ways

Notice that the example includes one single item, coupled to different actions. This
way of representing an item in an actor or behaviour model is called anitem barand is
very much like in IBM’s LOVEM (Helton et al., 1995). It is possible to use a different
item bar for each coupling and let each of them refer to the same item.

Currently,AMBER does not include an item modelling language. Hence, so far items
are not structured, nor related. At the moment, the inclusion of such a language is



matter of investigation. A subset of UML will be used, extended with the link to proc-
ess models.

3.2 Profiles for specialisation1

The concept of ‘profile’ is introduced inAMBER to allow for more tailored definitions
of concepts, even by end-users. This tailoring is useful for a variety of reasons:

• Export mechanisms. For instance, when a model is being translated into a
model for a workflow engine, additional parameters should be given for ac-
tions, like the executable that should be started for an end-user.

• Specific analysis tools. For quantitative analysis, for instance, aspects like av-
erage waiting time, or costs per activity or per resource are necessary. It is only
useful to specify these attributes if the analysis is used. When modelling for a
workflow engine, cost-aspects are rarely necessary and therefore do not need
to be part of the model.

• Context-specific information. Some companies may have a need to specify
company-specific information (like additional information for organisational
units). Such information is only useful for models that are relevant in that
company, and should therefore be visible only in these models.

The profile concept allows us to realise the structure visualised in Figure 3, where
the AMBER core is re-used for various analyses and/or export mechanisms. Typically,
for each of these pie charts one or more profiles are defined that contain the additional
attribute definitions necessary to perform the analysis techniques or generate specific
export formats. The profile concept makes it possible to use the same basic model for
different purposes, by associating the necessary information with modelling concepts.
Models need not contain all information, but only that information required for the
analyses or exports desired. The Testbed methodology helps the business engineer in
determining his or her information and analysis needs.

A profile is defined in a profile definition language containing type-definition con-
structs (for re-usable types) and supports sub-classing of profile definitions.

1 patent pending

type Money = alias real;
type TimeCat = enum {hour, day, week, month,
year};
type Rate = struct {

Money amount;
TimeCat period;

};

Profile Costs {
assignable to Actor;
Money fixed = 0.0;
Rate variable ={amount:100.0, period:hour};

};



The example above shows that there are a number of means to define types
(aliasing of built-in types, definitions via structures, unions, enumerations, and collec-
tions). The syntax resembles that of the C-programming language. We also support a
notion of single inheritance in the profile definitions. For instance, to declare a cost-
profile that by default has a fixed rate and an empty variable rate you would define:

3.3 Formalisation for analysis

One of the requirements for our language isanalysability.The AMBER language com-
bines organisational, behavioural, and data elements. For all these elements analysis
should be possible, preferably in combination. Formal methods provide analysability.
The current state of affairs, however, is that there in no sound mathematical model
available in the literature that combines those different elements and still allows for
tool supported analysis.

We therefore have taken a different approach. Instead of thriving for a single, uni-
fied semantic foundation, different non-conflicting semantic models are used for dif-
ferent aspects. Thus it becomes possible to develop means of analysis that function for
realistic business cases. One loses, however, the possibility to analyse relations be-
tween aspects that are in different semantic domains.

Many structural analyses are not really based on the underlying semantics, but on the
formal syntax. Such analyses, calledviews, allow to highlight specific structural as-
pects of models, such as “what activities can precede this action?”, or show the rela-
tionship between different modelling domain (“show what actors perform the activi-
ties”, or a dataflow view of behaviour). These views make extensive use of informa-
tion in profiles associated with objects in the model.

An operational semantics has been defined to analyse certain behavioural proper-
ties. It defines the meaning of processes in terms of state automata (Janssen et al.,
1998). It allows for both an interleaving interpretation as well as a multistep interpre-
tation. The operational semantics forms the basis of the stepwise simulation in the
tool. Functional analysis using model checking is derived from the same semantics.
We have defined a translation from the finite-state fragment ofAMBER to the input
language of the model checker Spin, called Promela (Holzman, 1997). This allows for
a full state space verification of temporal properties ofAMBER models (Janssen et al.,
1998). To define verification properties for functional analysis a pattern-based inter-
face is defined, allowing to check for sequences of activities, necessary precedence or
consequence, and combinations of occurrences. (Janssen et al., 1999). These patterns
are then translated to linear-time temporal logic and thereafter transformed to Spin
queries (never claims).

Profile FixedCosts isA Costs {
Money fixed = 25.0;
Rate variable;

};



For quantitative properties such an operational semantics is of no use. Instead, we
use analytical techniques for performance analysis, based on queuing theory, graph
models and hybrid models (Jonkers et al., 1998). Analysis of completion times, critical
paths, resource utilisation, and cost analysis are currently available.

As our data language is not fully developed as yet, no particular means of analysis,
other than structural analysis, are provided for items.

Finally, the tool allows to transform models to emphasise properties of the model. A
powerful concept is that ofprocess lanes. A business process model can be automati-
cally structured with respect to any attribute. For example, a process can be structured
into a single block (sub-process) for every actor involved, showing the change in re-
sponsibility in a process. Alternatively, the process could be structured with respect to
the business function associated with an activity, or whether the activity belongs to the
primary or secondary part of the process.

Figure 16. Tool support for AMBER in Testbed Studio

3.4 Tool support

The language is supported by an integrated set of tool components, together referred to
asTestbed Studio.
Testbed Studio has the following functionality:

• easy editing of models;



• quantitative analysis of models using various analysis methods;
• functional analysis of models using model checking;
• report generation;
• different views on models;
• step-by-step animation of models;
• management of trajectories of models (refinement of models, versioning);
• component libraries, to allow for re-use of business models.

Testbed Studio runs in the Windows environment. An example screen is shown in
Figure 16.

4 AMBER illustrated

During the past three years,AMBER has been applied in over 30 pilot studies within the
Testbed project. These pilots have actually been the steering wheel of the project.
Initially, the pilots have been used to study the essential concepts of business process
and formulate requirements on languages, methods and tools that should support the
business consultants. Later on, the pilots were used for validating results. Only by
doing real-life projects and solving real business problems one can optimise its lan-
guages, methods, and tools. Gradually, the cases became more complex, evolving
from modelling to analysis to redesign and implementation studies. Sample projects
concern decreasing the completion time of a insurance process with 30%, modelling
and analysing a business function architecture, analysis of the relationship between a
pension process and the organisations in its context it depends upon and so on/

In this section we present an imaginary redesign case concerning a car insurance
company. It is a realistic case because it is a generalisation of real-life cases. In the
following, we restrict ourselves to only one aspect of the overall Testbed approach for
business process analysis and redesign: the use of modelling. The overall approach is
discussed in Franken and Janssen (1998).

4.1 Modelling for analysis

Consider RR, a company selling property insurance for cars. Recently, insurance sales
have been decreasing. Only 25% of the quotation requests result in an insurance pol-
icy. The norm is 40%, however. Testbed andAMBER are used to find the bottlenecks,
suggest improvements, and analyse the impact of changes. From RR management we
find out that the service level provided is the most important success factor of RR.
Costs are in second place. A constraint is that the division of RR in departments
should not be changed. Finally, we get the suggestion that state-of-the-art technology
should be used. We first model the actors involved (Figure 17).



Figure 17. Actors involved in Claim Handling process

Next, we determine the service provided by RR and elaborate the internal processes
(Figure 18)

Figure 18. The Claim Handling process

The above behaviour is alogical model because it abstracts from physical implemen-
tation features. It just shows the request for quotation process. The exit shows the
process continues (with the payment collection, which we omitted in the figure).

Using a number of iterations, the model may be extended and improved. For exam-
ple, the department ‘Sales’, ‘Policy Management’ and ‘Finance’ may be distinguished
and the behaviour may be structured correspondingly. The duration of actions may be
specified, and probabilities may be added to each or-split. The resulting model is a
physicalmodel, showing the current implementation of activities. This model, with the

Insurance company RRInsurance company RR

Customer [*]Customer [*]

Central office
for insurers
Central office
for insurers Other insurers [*]Other insurers [*]

service previous insurerservice previous insurer

get
history

service central office
for insurers
service central office
for insurers

get
history

behaviour RRbehaviour RR

intake

estimate
risks

verify
request

check status
customer

register
make
policy

receive
request

proffer car
insurance

get
history

get
history

reject
request

receive
agreement

reject
policy

send
policy

unknown
customer

own
cust.

take
risk

not OK

OK

service customerservice customer

receive
rejection

request
quotation

receive
proffer

send
agreement

receive
policy

receive
rejection



profile for execution times filled out, can be used as input for analysis tools showing
the critical path or response times.

4.2 Model-based analysis

The physical models are not shown, but in Figure 19 some results are presented to
give an impression of Testbed analyses. The left plot shows the response time from
‘request quotation’ until either ‘receive rejection’ or ‘receive proffer’. The average
response time is 12.7 days, with 50% and 90% percent of the request handled in 13
respectively 18 days.

Figure 19. Completions times of Claim Handling proces

The right plot shows the response time from ‘request quotation’ till either ‘receive
rejection’ or ‘receive policy’ or ‘receive proffer’ (in case of no customer response).
The average response time is 15.3 days, with 50% and 90% percent of the request
handled in 14 respectively 24 days.

These results were analytically obtained using completion time analysis in Testbed
Studio. It does not require extensive simulation.

Modelling and analysis reveal the following facts:
• Customer satisfaction— Response to quotation request takes 12.7 days. After

customer agreement, policy may be rejected.
• The number of customer interactions— Customer interacts with all three de-

partments. Customer may be contacted twice before receiving quotation (not
shown in the model above).

• Performance indicators— 25% of request results in policy. Overall response
time is 15.3 days.

• The logical flow of processes— All customers are treated equally.

These facts are a starting point for the development of improved processes on the basis
of the models of the current situation. The models of the improved situation can then
be compared to the original situation, to assess the impact on people, throughput, cost,
completion times and so on.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

50

90

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

90

50



5 Conclusions and future work

In this paper a language was presented, suited to model, analyse, and redesign busi-
ness processes. Using different semantic models for the language, and embedding the
language in a methodology for business process redesign supported by tools, has lead
to a powerful integrated approach. The approach has proven itself in numerous cases
and shows that people that are not aware of intricacies of applying formal methods in
general can apply formal methods. Our approach effectively supports business ana-
lysts in their daily work: business process engineering.

The link to implementation is not yet well supported by the approach. Amongst
others, this requires incorporation of a language to model data. In our user audience
UML is gaining increased popularity. Combing UML-like definition with formal pro-
cess models is one of the challenges we face in the time coming. On the basis of
UML, the link to CASE tools is currently under investigation.

Acknowledgement

We would like to thank the anonymous referees for detailed suggestions and Henry
Franken for general comments on the paper.

This paper results from the Testbed project, a 120 man-year research initiative that
focuses on a virtual test environment for business processes. The Testbed consortium
consists of ABP, the Dutch Tax Department, ING Group, IBM and the Telematica
Instituut (The Netherlands) and co-operates with several Dutch universities and re-
search institutes. The project is financially supported by the Dutch Ministry of Eco-
nomic Affairs. We appreciate to acknowledge all Testbed contributors.

References

Auramaki, E., E. Lehtinen, and K. Lyytinen, A speech-act-based office modelling approach,
ACM Transactions on Office Information Systems, Vol. 6), No. 2, April 1988, 126-152.

Browne, J., P. Bradley, S. Jackson, and H. Jagdev, Business process re-engineering (BPR) - A
Study of the software tools currently available.Computers in Industry, 25 (1995), p. 309-
330.

Dahl, O.-J., B. Myrhrhaug, and K. Nygaard.SIMULA 67 Common Base Language. Norwegian
Computing Centre, Oslo, 1970, Publication N. S-22.

Dur, R.C.J.,Business reengineering in information intensive organisations. Ph.D. Thesis, Delft
University of Technology, 1992.

Franken, H.M., and W. Janssen, Get a grip on changing business processes,Knowledge &
Process Management(Wiley), Winter 1998.

Hansen, G. A., Tools for business process reengineering.IEEE Software, September 1994,
p. 131-133.

Helton, A., E. Zulaybar, and P. Soper.Business Process Engineering and Beyond. IBM Red-
book. Publication No. SG24-2590-00, 1995.



Holzman, G.J., The model checker SPIN,IEEE Transactions on Software Engineering, Vol. 23,
No. 5, May 1997, 279-295.

Jacobson, I., M. Ericsson, and A. Jacobson,The Object Advantage - Business Process
Reengineering with Object Technology, ACM Books, 1995.

Janssen, W., H. Jonkers, and J.P.C. Verhoosel, What makes business processes special? An
evaluation framework for modelling languages and tools in Business Process Redesign. In
Siau, Wand and Parsons (eds.),Proceedings 2nd CAiSE/IFIP 8.1 international workshop on
evaluation of modelling methods in systems analysis and design, Barcelona, June 1997.
(Availableashttp://www.telin.nl/publicaties/1997/caise97_final.doc)

Janssen, W., R. Mateescu, S. Mauw, and J. Springintveld, Verifying Business Processes using
Spin. In G. Holzman, E. Najm, and A. Serhrouchni (eds.), Proceedings 4th International
SPIN Workshop. Report ENST 98 S 002, pp. 21-36. Ecole Nationale Superieure des Tele-
communications, Paris, France. November, 1998.

Janssen, W., R. Mateescu, S. Mauw, P. Fennema, and P. van der Stappen, Model checking for
managers. In Proceedings 6th International SPIN Workshop on Practical Aspects of Model
Checking. Toulouse, France. September 1999.

Jonkers, H., W. Janssen, A. Verschut, and E. Wierstra, A unified framework for design and
performance analysis of distributed systems. Paper released toIPDS'98, IEEE International
Performance and Dependability Symposium, Durham, NC, USA, 7-9 September 1998.

Lawrence, P. (Ed.),Workflow Handbook, John Wiley & Sons Ltd, Chichester, UK, 1997.
Lazowska, E.D., J. Zahorjan, G. Graham, and K. Sevcik,Quantitative System Performance:

Computer System Analysis Using Queueing Network Models. Prentice-Hall, 1984.
Medina-Mora, R., T. Winograd, R. Flores, and F. Flores, The action workflow approach to

workflow management technology. InProceedings of CSCW '92, November 1992,
pp. 281-288.

Ould, M.A., Business Processes: Modelling and analysis for re-engineering and improvement,
John Wiley & Sons, Chichester, England, 1995.

Pegden, C.D., R.R. Shannon, and R.P. Sadowski,Introduction to Simulation Using SIMAN.
Second ed. McGraw-Hill, 1995.

Quartel, D.A.C., L. Ferreira Pires, M.J. van Sinderen, H.M. Franken, and C.A. Vissers, On the
role of basic design concepts in behaviour structuring,Computer Networks and ISDN Sys-
tems29:4, March 1997, pp. 413-436.

Rational Software Corporation,Unified Modeling Language, Version 1.0, 1997 [Unpublished
report]. http://www.rational.com/ot/uml/1.0/index.html.

Rijst, N.B.J. van der, and J.L.G. Dietz, Expressing production control principles in the DEMO
communication model. In: A. Verbraeck, H.G. Sol and P.W.G. Bots (Eds.),Proceedings of
the Fourth International Working Conference on Dynamic Modelling of Information Sys-
tems, Delft University Press, Delft, The Netherlands, 1994, pp 171-186.

Scheer, A.-W.,ARIS – Business Process Frameworks. Springer-Verlag, 1998.
Scherr, A.L., A new approach to business processes,IBM Systems Journal, Vol. 32, No. 1,

1993, pp. 80-98.
Vissers, C.A., Report on the architectural semantics workshop. In: J. de Meer, B. Mahr and

S.Storp (eds.), Proceeding of International Conference on Open Distributed Processing, IFIP,
pp. 367-386. North-Holland, 1994.

Winograd, T., and F. Flores,Understanding computers and cognition: A new foundation for
design, Ablex, Norwood, NJ, 1986.


