I nformation Processing Society of Japan

Translation from Transactions of IPSJ

Generation of the Hichart Program Diagrams

KoicHI OGura*, NoBuyosH1 Go**, Mik1 KISHIMOTO
Youzou Mi1YADERA**** NaOYUKI OKADA***** KENSEI TSUCHIDA
and TAKEO YAKU

HirosHI UNNO****

ok ok K
e 3k ok ok %k k
3k ok %k k

This paper concerns methods of generating tree-structured program diagrams.

The first part introduces an implementation of a system for generating Hichart [1, 7] diagrams. The drawing
of the diagrams is then discussed. Several eumorphous conditions are formalized for tree-structured diagrams
that consist of non-uniform sized cells. Some are conversions of conditions for trees [2-4], and some are exten-
sions of recent results [12]. It is shown that some eumorphous conditions correspond to O(n) and O(n*) time
complexity algorithms and to an NP-hard problem, analogously to conditions for trees [6]. Finally, several
methods are introduced that provide diagrams satisfying eumorphous conditions introduced here.

It is noted that this system for generating Hichart program diagrams is the first that employs formalizéd
eumorphous conditions and corresponding formalized methods, and that the results given in this paper can be
applied to all tree-structured diagrams, including PAD, SPD, and TSF program diagrams.

1. Introduction

Since the 1970’s, a number of program diagram
languages have been proposed as tools for visual
representation of programs, in order to reduce the com-
plexity of program development and analysis. They in-
clude NSD, Hichart, HCP, SPD, TSF, PAD, YACII,
and 50SM [9, 10]. A number of processing systems have
been also implemented for these program diagram
languages [8], namely, diagram generators, diagram
editors, diagram compilers, and related systems. We
will deal in this paper with methods and theory related
to these processing systems for program diagram
languages.

An important problem in the design of such proc-
essing systems is how to draw program diagrams tidily
and efficiently. So far, however, there has been no sys-
tematic study of this drawing problem.

We will consider Hichart program diagrams, which
are sets of tree-flowcharts [1]. The tree-flowchart in-
troduced the iteration symbol [_[] for the first time.
Recently, this symbol has been commonly used in

This is a translation of the paper that appeared originally in
Japanese in Transaction of IPSJ, Vol. 31, No. 10 (1990), pp. 1463-
1473.

* Academic Computing Center, Hokkaido Tokai University,
Sapporo, Hokkaido, Japan.
**Academic Computing Center, Tokai University, Hira-
tsuka, Kanagawa 259-12, Japan.
***Fyjitsu Ltd., Kawasaki, Kanagawa, Japan.
****Department of Information Sciences, Tokyo Denki Univer-
sity, Hatoyama, Saitama 350-03, Japan.
****¥*NEC Corp., Fuchu, Tokyo, Japan.

***x%*Department of Industrial Engineering and Management,

Kanagawa University, Yokohama, Kanagawa, Japan.

Journal of Information Processing, Vol. 15, No. 2, 1992

several program diagrams languages. The major charac-
teristics of Hichart are (1) a tree-flowchart keeps the
flow control lines of a Neumann program flowchart, (2)
only two classes of symbols are added to the Neumann
flowcharts to represent control structures, one for itera-
tion and the other for selection, and (3) a program is
represented by a tree-like structured graph, which is
spread rightward by the use of these two classes of con-
trol symbols. Therefore, Hichart is different from many
other diagram languages in the sense that it keeps the
characteristics of a flow chart, and is able to describe
simultaneously both the hierarchy and the flow of the
control. The tree-flowchart discussed here is a diagram
in which each rectangle (cell) is placed in a tree-like
structure on the integral lattice. The tree-flowchart can
be used to represent not only a control flow but also the
modular structure and data structure of a program.

Our diagram-generating subsystem was implemented
as a part of a system that generates program diagrams
from Pascal source programs. The details of its develop-
ment steps are as follows.

(1) First, we dealt with a generating system that
manipulates a program diagram, which consists only of
fixed-size (1 x 1) rectangles (‘‘cells’’).

(2) Next, we developed a method for diagram
layout optimization that employs the results of tree
layout optimization problems [6]. We also developed a
module that determines the size of cell symbols accord-
ing to lexical analysis, and implemented a system for
generating the diagrams, which consists of cells with
variable heights and fixed width.

(3) Then, we extended the generating system to
enable it to manipulate program diagrams in which

NI | -El ectronic Library Service

I nformation Processing Society of Japan

294 K. OGuUra, N. Go, M. KisHIMOTO, Y. MIYADERA, N. OkADA, K. TsucHIDa, H. UNNO and T. YAKU

both the heights and widths of cells are variable [5].

The problem of drawing trees tidily is known to be
similar to our problem of drawing tree-flowcharts
tidily. The former problem has been studied frequently
from the point of view of graph algorithm theory.
Wetherell and Shannon formalized constraints for the
tidy drawing of binary trees and proposed a linear time
algorithm for the drawing [2]. Reingold and Tilford
presented a linear time algorithm that gives narrower
drawings of binary trees while satisfying the Wetherell-
Shannon constraints [3]. Supowit and Reingold proved
that the problem of determining the narrowest drawing
of binary trees under the Wetherell-Shannon con-
straints has polynomial time complexity in the case of
real number coordinates, because the problem can be
converted to one of linear programming, while the prob-
lem is NP-complete in the case of integer coordinates
[4].

Tsuchida introduced constraints for general n-ary
trees after being motivated by the problem of drawing
Hichart program diagrams. Furthermore, he showed
that the problem of drawing the narrowest n-ary trees
has a computational hierarchy such as O(n), O(n?),
o(n®), O(n*), and NP-hard, according to the sets of
constraints [6].

Go and others modified the above constraints in »n-
ary tree drawings, and obtained the constraints in pro-
gram diagram drawing [12]. The problem of drawing
program diagrams has been also studied from the point
of view of attribute graph grammars. Nishino con-
structed an attribute graph grammar corresponding to a
set of constraints, and obtained several properties of
the problem [11].

The motivation of our study in this paper is to imple-
ment a diagram processing system that employs a sys-
tematic theory including diagram drawing problems.

The methods newly obtained in this paper will be ap-
plied not only to Hichart and PAD diagrams but also to
SPD and YAC II diagrams and to all the generating
systems for displaying tree-structured data.

As a first step, we deal in this paper with the follow-
ing two subjects. First, we introduce a method of im-
plementing the generating system. Second, we for-
malize diagram drawing problems in a mathematical
theory, and clarify the mathematical properties of these
problems.

In Section 2, we will introduce the data structure and
the procedure structure of a Hichart diagram
generating system. We will attempt to represent a pro-
gram diagram by means of a hierarchical graph. Accord-
ingly, we can smoothly employ a graph theoretical
approach in our system. In consequence, it is easy to
improve our system and to add new functions to it.

In Section 3, we will modify the constraints [2, 4, 6]
and introduce several constraints for tree-structured
diagrams. First, we will deal with several constraints for
tree-structured diagrams. The constraints for n-ary
trees [6], which have been studied from the viewpoint of

graph algorithm theory, are directly applied to program
diagrams consisting only of uniform-sized cells. We
therefore extend the constraints corresponding to tree-
structured diagrams that consist of non-uniform-sized
cells. Furthermore, the constraint in the former condi-
tions [4, 6], in which every parent cell is centered over
its children, can be applied only to a special situation of
display (such as a fair copy) for a minority of program
diagrams, such as PAD and Hichart diagrams.
Therefore, there may exist some better sets of con-
straints for program diagrams in which a constraint
causes the parent cell to be placed & (k =0) levels below
its top child. We formalize this constraint. The resul-
tant set of constraints is effective in displaying SPD,
YAC II diagrams, and other diagrams, in addition to
PAD and Hichart diagrams. It is known that for n-ary
trees, the sizes of horizontal intersections between the
subtrees affects the time complexity of a layout
algorithm [6]. We will there-fore introduce two alter-
native constraints for tree-structured diagrams. One,
E,(j), permits intersection and the others, E;(j), does
not [12]. The horizontal length of the interior cells is
fixed at 1 in conditions Eo(j) and E,(J), in considera-
tion of the application to program diagrams. We will
formalize, in Section 3, conditions Fy(j) and F.(j)
without this constraint.

In Section 4, we will deal with methods and their com-
plexities corresponding to a set of the above con-
straints. We consider two methods corresponding to the
conditions Fy(j) and Fj(j). These methods are
modified from the former algorithms [6] by the exten-
sion and modification of the constraints described in
Section 3. It is noted that we obtain the relations among
the constraints and the time complexity in the problems
of drawing tree-structured diagrams.

2. System Structure of a System for Generating
Program Diagrams

In this section, we describe the internal representa-
tion of program diagrams, which are used in our system
for processing program diagrams, and the modular
structure of the processing system. In subsequent sec-
tions, when we consider drawing problems, we assume
the internal representation and the processing system de-
scribed here.

To begin with, we explain the language specification
of Hichart. A Hichart program diagram is a graph com-
posed of control symbols, as shown in Fig. 1. A Hichart
program diagram is also called a ¢ree flowchart, and is il-
lustrated in Figs. 2 and 3. Figure 2 shows an example of
a Hichart program diagram. Figure 3 shows an ex-
planatory diagram, which is a Neumann flowchart corre-
sponding to Fig. 2. Next, we describe the internal
representation in the processing system. In the Hichart
processing system, Hichart program diagrams are
represented by using a common internal representation,
and are treated uniformly. This internal representation

NI | -El ectronic Library Service

I nformation Processing Society of Japan

s im it ey e e v a e i A ey ver e

START
Selection
A
B ?
F

Parallel selection,
record
T:

Parallel iteration,

vector C
WHILE

Continuous iteration, D

file

Pre-tested iteration E

Post-tested iteration m

Fig. 3 Neumann flowchart corresponding to Fig. 2.

Fig. 1 Hichart control symbols.

(level 1) I

(level 0) {eldest child)
pointer to previous cell
PROGRAM A
P
-cell type
-cell strings
+cell label
T: (level 2) e -condition label *+4——

pointer to parent cell| cell relative pointer to child cell
position
B? 1 Cc ‘cell size

pointer to next cell

Ner 1

(youngest child) Fig. 4 Structure of H-code for internal representation.

Fig. 2 Example of a Hichart program diagram.

(level 1)
(level 0) (eldest child)

is called H-code. Information on a cell in the H-code is
represented by one record. A graph is usually expressed

by vertices and edges, but information on a cell in the |
H-code also includes information on how it can be link-
ed to other cells. Figure 4 shows the structure of the in-

-——Ty

Loowu

|
(
(
[

]
o“‘__/

ternal H-code representation. Figure 5 shows a Hichart devel B
program diagram represented in H-code. ETA_AIDE PN

[9] is a software development environment in which pro- ° J‘”” I
grams written in Hichart can be manipulated. It con- . —
sists of a system that manages specifications, program —ﬂ

diagrams, source programs, and relational databases, v —
and a filter between those objects. The core part of N
ETA_AIDE is Eta/H*, which is the processing system for * m ~ E] }
the Hichart program diagrams. It consists of three — —
tools: Eta/HED (a Hichart flowchart EDitor), (voungest child)
Eta/HfromP (a Hichart-from-Pascal translator), and Fig. S Example of a Hichart program diagram represented by H-
Eta/HtoP (a Hichart-to-Pascal translator). The struc- code for internal representation (an outline).

NI | -El ectronic Library Service

I nformation Processing Society of Japan

296 K. OGura, N. Go, M. KIsHIMOTO, Y. MIYADERA, N. OKADA, K. TsucHiDA, H. UnNo and T. Yaku
Pascal
to H-code
Converter (i) HCel 10pt
@ Eta/Hf romP)
H-code
- (t;zni::::: (ii) HListLO
@ Eta/HtoP) -
H-code
Hichart R Hichart
Editor Program
Diagram Gi) HListToChar
@ Eta/HED)
VDT
g;:hn:; Hichart
gr >| Program . .
Generator Diagram (iv) HListToG
@ EtaHf romP)

Fig. 6 Structure of the processing system of the Hichart program
diagram.

ture of Eta/H¥ is illustrated in Fig. 6.

The Hichart Diagram Generator and drawing prob-
lems are related to the HED and the HfromP. We now
describe the function and structure of the Hichart
Diagram Generator. The Hichart Diagram Generator
consists of the following four modules:

(i) HCellOpt (an H-code Cell size Optimizer). This
adjusts the length of character strings written inside
each cell, decides each cell size, and stores this informa-
tion in H-code lists (see Fig. 4) (about 500 Pascal steps).

(ii) HListLO (an H-code List Layout Optimizer).
This determines the placement of each cell in drawing a
diagram, and stores this information in H-code lists
(about 1000 Pascal steps).

(iii) HListToChar (an H-code List-to-Character
format converter). This puts out the Hichart diagrams
on printing devices from generated H-code lists (about
2000 Pascal steps).

(iv) HListToG (an H-code List-to-Graphics). It
puts out the Hichart diagrams on graphic devices from
H-code lists (about 2000 Pascal steps).

The system flowchart of the Hichart Diagram
Generator is shown in Fig. 7. The method described in
Sections 3 and 4 is used in HListLO.

3. Eumorphous Conditions for Program Diagrams

In this section, we consider tree-structured program
diagrams of ‘‘cells’’ with variable sizes, and deal with
‘“‘eumorphous’’ conditions concerning the drawing of
the diagrams. Drawing methods for trees can be applied
to the drawing of a tree-structured program diagrams
of uniformly sized cells. First, we will define the follow-
ing terms in order to apply the drawing problems of
trees to the problems of drawing tree-structured pro-
gram diagrams.

Fig. 7 System flowchart of the Hichart Diagram Generator.

Definition 1. A tree structure is T=(V, E, r, width,
depth), where (V, E) is an ordered tree (a tree denotes
an ordered tree), V is a set of cells, and E is a set of
edges. re V is the root cell. The map width V—Z is the
width function of the cells. width(p) represents the ver-
tical length, which is called the width, of the cell p. The
map depth V—Z is the depth function of the cells.
depth(p) represents the horizontal length, which is
called the depth, of the cell p.

Definition 2. A placement of a tree structure 7T is de-
fined by the following function 7:

n: the cells=ZxZ. n,(p) and n,(p) denote the x-
coordinate and the y-coordinate of p, respectively,
where n(p)=(x, y). We assume that the x-coordinate is
directed from left to right and that the y-coordinate is
directed downward, because of the application to pro-
gram diagrams.

A pair (7, n) is called a tree-structured diagram. A
tree structure is a rooted tree in which each tree is as-
signed two attributes, width(p) and depth(p). A tree-
structured diagram is a rooted tree with vertices defined
by four values, width(p), depth(p), n.(p), and n,(p).
Each rectangle is represented by a cell, and a tree-struc-
tured diagram represents a diagram of rectangles placed
in a tree structure on the integral lattice. In this paper,
we call the length of a tree-structured diagram along the
x-axis its depth (in the hierarchical order), and the
length of a tree-structured diagram along the y-axis its
width, in view of the application to program diagrams.
In our discussion of ordered trees (ordered tree-struc-
tured diagrams), brothers (cells) are numbered in
downward order. We define the location of a cell as
follows. The unit length of x-coordinates (y-coordinates)
is defined as the length of the vertical (horizontal)
length of the unit cell (size 1 x 1). If the Jocation of a cell
P is (x, y), then we can put x unit cells between the cell p

NI | -El ectronic Library Service

I nformation Processing Society of Japan

Sovrevrwmesue vy sraL caSLIEMrS & TUSHMITE ASBUET WITIO

and the y-coordinate, and y unit cells between the cell p
and the x-coordinate. The width of a tree-structured
diagram (7, n) is defined by:

width(T, n)=def=max{n,(p)+ width(p)-n,(g)—1
|p and q are cells in T and =,(p)=n,(q)}. The level of
a cell p is defined by the number of edges between the
cell p and the root cell. For a cell p, the function Index
is defined by

Index(p)=def=0: if p is the root cell

it if p is the i-th child of the parent
of p
We introduce constraints concerning a placement of
a tree structure. The following constraints B1, B2, B3,
B4, B5, B5(j) and BY¥(k) are introduced by Go. et al.
12].
[éonstraint B1 [2] (the lines among cells are not cross-
ing). For a tree-structured diagram (7T, r), if the level of
a cell p is equal to the level of a cell g and =, (p) < 7,(q),
then

ny(the oldest child of q) > m,(the youngest child of p)
+ width(the youngest child of p)

Constraint B2 (the cells are mutually disjoint). For a
tree-structured diagram (7,7) and a cell p, let area(p, n)
=def={(x, y)|n(p)sx=mn.(p)+depth(p)—1, n,(p)
sy=mn,(p)+width(p)—1}. Then,

are(p, nm)Narea(q, n)=¢ for all p and g(p=q).

Constraint B3 [4]. For a tree-structured diagram (7,
n), if T1 and T2 are topologically isomorphic sub-tree
structures, then 71 and 72 are placed in the same form
with respect to a parallel movement.

The following Constraint B4 is common in eumor-
phous conditions [2] of a tree. For a tree-structured
diagram, the constraint is introduced in order to make
the logically hierarchical level and the geometrically
hierarchical level of a cell coincide [12]). The constraint
is specific to tree-structured diagrams.

Constraint B4 [12]. In a tree-structured diagram (7,
n), for any cell p with the level i, n,.(p)=i.

The following constraint is an extension of Con-
straint B4.

Constraint B4’. Let a cell p be in a tree-structured
diagram (7, n), and let po, py, . . . , pn be the cells on
the path from the root cell r=p, of T to p,=p. Then
nx(p)=Z(ogsm_,)width(p;).

The following constraint is common for binary trees
[2]. This constraint is efficient for the attractive printing
of several kinds of program diagram languages, in-
cluding PAD and Hichart diagrams.

Constraint B5. For a tree-structured diagram (7, n),
if a cell p has k children qi, . . ., g« (Index (g)=i,
1 <i<k), the n,(p) satisfies the following condition:

n,(p) +[width(p)/21=n,(g:) +[g/2],

where g=m,(q«) + width(g,)—n,(q)) — 1.
Constraint BS is not generally suitable for displaying

>4l

program diagrams. That is, if the diagram is displayed
downward in a VDT, a child module may be displayed
earlier than its parent module on the VDT. We
therefore introduce the following constraint instead of
Constraint B5.

Constraint BS(j). In a tree-structured diagram (7, n),
if a cell p has k children qi, . .., q« (Index(g)=i,
lsi<k), then n,(p)=mn,(gq))+min{j, n,(q:)— n,(q)}

A function Intersect of the set of tree-structured
diagrams to the integers is defined as follows:

Intersect(T, n)=def=max{n,(p)—n,(q)+1, where
T1 and T2 are arbitrary sub-tree-structures for which
the root cells are brother and Index(the root of 72)> In-
dex(the root of T1). p and q are arbitrary cells in 71
and T2, respectively.}

The next constraint concerns intersections between
tree structures. It is known that the time complexities of
the drawing problems for trees depend on the values of
these intersections [6].

Constraint B¥(k). For £k =0, a placement n satisfies
Intersect(T, n)<k.

Next, we combine the above constraints and in-
troduce several ‘‘eumorphous conditions’’ for a tree-
structured diagram. The first two conditions below are
the same as the corresponding eumorphous conditions
[2, 6] for trees, in which the constraint corresponding to
Constraint BS in a tree is not changed. These conditions
can be used to produce attractive drawings of program
diagrams such as PAD and Hichart.

Notation 1 [12]. The eumorphous conditions E, and
E for a tree-structured diagram are combinations of
the above constraints:

Ey,=BI1AB2AB3AB4ABSABY (0)

__EL=BIAB2ABAABS

The next conditions are modifications of the above
conditions obtained by replacing BS with BS5(j) for
more general drawing of tree-structured diagrams.

Notation 2 [11]. The eumorphous conditions Ey(j)
and E ,(j) denote the combinations

Ey(j)=B1AB2AB3AB4ABS5(j)ABY (0)
E,(j)=BI1AB2AB4AB5(j)

The next conditions are modifications of the above
conditions obtained by replacing B4 with B4’ for
general drawing of tree-structured diagrams.

Notation 3. The eumorphous conditions Fy, Fj,
Fo(j), and F4(j) denote the combinations

Fy=B1AB2AB3AB4’'AB5ABY (0)
Fi,=B1AB2AB4'ABS
Fo(j)=B1AB2AB3AB4'AB5(j)ABY (0)
Fu(j)=B1AB2AB4’'AB5(j)

These conditions are applicable not only to PAD and

Hichart diagrams that are drawn in a fan style, but also
to a large number of diagrams in which the hierarchical

NI | -El ectronic Library Service

I nformation Processing Society of Japan

298 K. OGura, N. Go, M. KISHIMOTO, Y. MIYADERA, N. OKADA, K. TsucHiDA, H. UNNO and T. Yaku

level and the x-coordinate of the cell coincide, including
SPD and TSF diagrams. Furthermore, they are partly
applicable to the drawing of HCP and other diagrams.
The Hichart program diagram shown in the following
figure satisfies the eumorphous condition E.

4. Drawing Methods

In this section, we consider informal methods of ob-
taining placements under the eumorphous conditions in-
troduced in the last section. In problems of drawing
trees tidily the drawing problem is NP-hard if the inter-
val between the children of each vertex is uniform [6].
Accordingly, the following Theorem 1 holds for tree-
structured diagrams.

Constraint B #. For a tree-structured diagram (7, n),
if a cell p has k(k=3) children qi, . . ., qx (Index(q;)
=i, 1<i=<k), then m,(gj+2) — 1,(gj+))=1,(+1) — 7,(q)
(1=sj=<k—-2)

Let E#f=BIAB2AB3AB4'AB5AB#. Then we have

Theorem 1. In a tree-structured diagram (T, n), it is
NP-hard to determine whether the placement n satisfies
the constraint Ey and has the narrowest width.

For trees, the complexity is known when the follow-
ing constraints are added. Cousequently, we have
similar results for tree-structured diagrams. The pro-
totype of the following condition was introduced to
allow easy development of algorithms [6].

Constraint B$. For a tree-structured diagram (7, n),
for all sub-tree structures 7; and 7; with the root cells r;
and r; and with Index(r))+ 1= Index(r;), the maximum
value of 7, (the lowest cell of T;) + width (the lowest cell
of T)<n,(r)+[width(r)/2], and

nt,(r;)+ [width(r)/2) < n, (the highest cell of 7))

Notation 4 [6]. The eumorphous conditions £,$ and
F,$ are defined by

E.$=B1AB2AB3AB4AABS(j)ABS
F,$=BI1AB2AB3AB4'ABS(j)ABS

Theorem 2 [6). Suppose that any cell v in a tree struc-
ture T satisfies the equation width(v)=depth(v)=1.
Then, there is on O(n’) time algorithm that provides the
narrowest placement satisfying the eumorphous con-
straint E 3.

Next, we consider drawing methods, concerning the
conditions Fy(j) and Fy(J), (j=0), for the tree struc-
tures of cells with variable sizes. Making the narrowest
placement 7,,;, for a tree structure 7 under the eumor-
phous condition Fy(/), (j=0) is called the initialization
of the placement. The placement n;,; is called the initial
placement. The initialization procedure of the place-
ment is easily constructed as follows:

Procedure /nit: initialization of the placement

[Calling sequencellnit (T, j, Minir)

{Input]T=(V, E, r, width, depth), j

[Output}z;..: the narrowest width placement for 7
satisfying Fo(j)

A
m

—

index

e ol

item

y

procedure
ort H

array (; 1 integer
PR A 1

S
e

h

C1D:=9;h(2.
ih.3.):=38;ht

.4 =13

k:zh(m.;s:i=-k
for m :=1{ ji=i-k;
tot H pis=i-ks
T T
ifts=0 s :=-k
T
for i := K s:=s+1;a(s.) =x
~ +1ton]|H
1
while x . al j+k.)=a(j.)
key < a (. =gk
i) . kel
Y
1
a (. j+k
YN =x

Fig. 8 Example of a Hichart program diagram satisfying condi-
tion E,.

[Method]place each cell in post order that satisfies
the constraints B1, B2, B3, B4’, B5(j).

Lemma 1. 7,,;, obtained by the procedure Init is the
narrowest placement that satisfies Fy(j). Init runs in
Ofn) time.

Proof Outline. The constraints B1, B2, B4’, and
B5(j) are obviously satisfied. B3 is also satisfied,
because the placement works in post order. The width is
clearly at a minimum.

A placement removal means changing the placement
Tinir that satisfies the eumorphous condition Fy(j) (j=0)
to a narrower placement that satisfies the condition
F(j), (j=0). The following procedure Layout for a
placement removal is a combination of the above Init
and the next subOpt. Another procedure [6] is known
for conditions Fj and F, $, when the sizes of the cells are
uniform. A eumorphous placement of a sub-tree struc-
ture 7, with the root cell q is determined as follows:

Procedure SubOpt: an upward movement of a sub-
tree structure

NI | -El ectronic Library Service

I nformation Processing Society of Japan

Generarion 0j tne riicnart rrogram cniagrams

[Calling sequence] SubOp«(T, j, p, @in, Tow, M)
linput]T=(V, E, r, width, depth): a tree structure
p:acellof T
we assume that 7, is a sub-tree structure with a root p
inT
Tin: a placement of T
Jijin Fi(j)
m: a mark on the cells in T
[Output]n...: A placement of T,, the removed place-
ment
[Method (Outline)]
begin
(*This procedure runs in post order and *)
(* determines the locations of the cells in *)
(* post order. *)
Initially 7o, = 7in;
Let p1, . . ., p« be the children of p;
for i=1to k do
begin
if p; is an unmarked leaf then
begin
move p; upward satisfying
B1, B2, B4’, and BS5(j) with respect

to p;
Mark ‘““moved”’ p;;
Mine = Tout
end;
if pi is an unmarked interior cell then
begin

SubOpt(T, j, p, in, Mow, M);
Mark p; “moved”’;
Tin + = Tout
end
end;

Evaluate the maximum distance d of the upward

movement of p satisfying B1, B2, B4’, and

B5(j) with respect to 7, and P, where P is

the set of cells located above T;

Shift upward all cells in 7, by d;

Tin: = Mout
end.

Lemma 2. The placement n,., obtained by the pro-
cedure SubOpt for T, satisfies Fi(j), and the width of
Tlow IS narrower than or equal to the width of the place-
ment Tin.

Proof Outline. Constraints B1, B2, B4’, and B5(}j)
are clearly satisfied.

Accordingly, a eumorphous placement of a tree struc-
ture T is obtained by the following procedure Layout:

Procedure Layout: Removal of a placement of a tree
structure.

[Calling sequence] Layout(T, j, n, width_T_n)
[Input] T=(V, E, r, width, depth): a tree structure
JiJin Fi(j)
[Output] n: A eumorphous placement of T satisfying
Fix())
width_T_n: width(T, n)

&77

[Method]
begin
Iniy(T, j, Mini);
Initially, all cells in T are unmarked;
SubOp«T, j, r, s, m, Mark)

end.

Proposition 1. The procedure LayOut provides a
placement nn with a width narrower than or equal to
TLni, Which satisfies the condition F (j).

Proof Outline. We can verify that the procedure
satisfies the constraints as follows. B1, B2, B4’, and
B5(j) are clearly satisfied.

The procedure LayOut runs in O(n®) time. For the
condition F,, we can consider similar procedures to
that for a tree.

5. Conclusions

In our system for generating program diagrams,
graph algorithm theory can be easily applied to tasks
such as drawing problems, since program diagrams can
be represented by hierarchical list structures, as shown
in Section 2. This style of representing the inner struc-
ture of generators of structured program diagrams is
effective for representing general structured diagrams in
list structures. Such diagrams include NSD diagrams of
modular structures in addition to hierarchical tree-struc-
tured program diagrams.

Traditional eumorphous conditions for n-ary trees
are effective for tree-structured diagrams with uni-
formly sized cells. We formalized in Section 3 the
eumorphous conditions for tree-structured diagrams
with cells of variable sizes. We also introduced a new
constraint, the locations of parent cells. The new eumor-
phous constraint is applicable not only to Hichart and
PAD diagrams, in which the root cell is located in the
center of the left-hand side, but also to SPD, YAC II,
and TSF diagrams, in which the root cell is located at
the top of the left-hand side.

In Section 4, we considered a drawing method corre-
sponding to the eumorphous conditions introduced in
Section 3. Our eumorphous conditions were compared
with the eumorphous conditions of trees, and were
shown to have time complexities that are O(n), O(n?),
and NP-hard according to the level of eumorphousness.
In the development of practical programs, the O(n) con-
dition is appropriate for use in the middle stages of
development, and the O(n*) condition is suitable for
use in the documentation stage after development. The
NP-hard condition seems to be the most eumorphous,
but it is not feasible.

Finally, we introduced a method called LayOut corre-
sponding to our eumorphous constraint, as the main
result of this study.

We implemented drawing modules with procedures
corresponding to the conditions Fo, Fy, Fo(j), Fx(J),
and are using these modules in programming education
and program development.

NI | -El ectronic Library Service

I nformation Processing Society of Japan

300 K. OGura, N. Go, M. KisHIMOTO, Y. MiYADERA, N. OKADA, K. TsUCHIDA, H. UNNO and T. YAKU

Our results are partially applicable to HCP diagrams,
in which equally leveled cells may be placed from left to
right, but not to the NSD and Chapin charts, which are
formed in modular structures.

In the future, it is necessary to consider variations of
the eumorphous conditions introduced in Section 3.
Furthermore, it is necessary to investigate whether the
LayOut method provides the placement with the nar-
rowest width. If not, then it will be removed. In prac-
tical drawing modules, the width and the depth of a
diagram are limited by page margins. As a result,
diagrams have to be drawn separately in page margins.
Accordingly, it is necessary to integrate the layout
module and decision modules for the sizes of the cells.
Accordingly, it is necessary to consider a module that
works interactively between determination of the sizes
of the cells and drawing modules introduced here, and
to evaluate those complexities.

The LayOut method is shown to provide a diagram
satisfying the eumorphous condition. It is an open ques-
tion, however, whether the output diagrams of LayOut
have the narrowest width.

Acknowledgement

This diagram generating system has been developed
over a long period. The authors thank Mrs. Michiko
Nakanishi of Tokai University, Mr. Yoshiichi Osada of
Tokai University, Mr. Kazuhiro Takeuchi of Tokai Uni-
versity (presently in NEC Corp.), Mr. Masahiko Kondo
of Waseda University (presently in IBM Japan Corp.),
Mr. Hiroshi Banba of Tokai University (presently in
Hokkaido Tokai University), and Mr. Kazuaki Imai of
Tokai University (presently in CSK Corp.), for their
assistance in the development of the system. They are
also indebted to Dr. Kokichi Futatsugi of Elec-

trotechnical Lab., Prof. Koushi Anzai of Kanto
Gakuen University, Prof. Kimio Sugita of Tokai Uni-
versity, Prof. Esturo Moriya of Tokyo Women’s Chris-
tian University, and Dr. Tetsuro Nishino of Tokyo
Denki University (presently in Japan Advanced In-
stitute of Science and Technology, Hokuriku).

The seventh and eighth authors were wartly sup-
ported by a Tokyo Denki University Research Institute
Grant and by a grant from Galois Corp.

References

1. Yaku, T. and Furtatsucli, K. Tree-Structured Flowcharts,
Memoir of IECE, J. AL-78 (in Japanese with English abstract) (1978),
61-66.

2. WETHERELL, C. and SHANNON, A. Tidy Drawings of Trees, IEEE
Trans., SE-5 (1979), 514-520.

3. REINGOLD, E. M. and TiLFORD, J. S. Tidier Drawings of Trees,
IEEFE Trans., SE-7 (1981), 223-228.

4. Supowir, K. J. and REINGOLD, E. M. The Complexity of Draw-
ing Trees Nicely, Acta Inf., 18 (1983), 377-392.

5. MIYADERA, Y., IMAL, K., KUWABARA, H., UNNO, H. and Yaku,
T. ETA87-An Extension of a Hichart Flowchart Processing System,
Proc. 35th Annual Convention IPS Japan (1987), 1201-1202.

6. TsucHiDA, K. The Complexity of Tidy Drawings of Trees,
Topology and Computer Science (S. Suzuki ed.), Kinokuniya, Tokyo
(1987), 487-520.

7. Yaku, T., Furatsucl, K., ADACHI, A. and Morivya, E.
HICHART-A Hierarchical Flowchart Description Language-, Proc.
IEEE COMPSAC, 11 (1987), 157-163.

8. Sucai, M., UcHivaMa, A., HaGIwARA, N., RekiMoToO, J.,
Koyamapa, M. and SHIGO, O. A Coherent Software Development
System with Interface Dictionaries, Proc. IEEE COMPSAC, 11
(1987), 428-432.

9. HaRrADA, K. (ed.), Structured Editors, Kyoritsu Shuppan (in
Japanese, 1987), Tokyo.

10. Tripp, L. L. A Survey of Graphical Notations for Program
Design-An Update, ACM SIGSOFT SOFTWARE ENG. NOTES, 13
(1988), 39-44.

11. NisHINO, T. Attribute Graph Grammars with Applications to
Hichart Editors, Advances in Software Science and Technology, 1
(1989), 426-433.

12. Go, N., KISHIMOTO, M., MIYADERA, Y., OKADA, N., TSUCHIDA,
K. and Yaku, T. Generation of Hichart Program Diagrams, Trans.
IPSJ, 31 (1990), 1463-1473 (in Japanese).

NI | -El ectronic Library Service

